

DEVELOPMENT OF A 3D SIMULATION TOOL LEVERAGING

GENETIC ALGORITHMS FOR NEURAL NETWORK

OPTIMIZATION IN AUTOMATED DRIVING SYSTEMS:

AN APPLICATION FOR SCENARIO ANALYSIS

by
Darold Davis

A thesis submitted to Johns Hopkins University in conformity with the requirements for

the degree of Master of Science

Baltimore, Maryland

March 2025

© 2025 Darold Davis
All rights reserved

ii

Abstract

As vehicular automation progresses, designing and validating reliable yet

proficient automated driving systems (ADS) remains a challenging imperative, as the

current state relies on live driving scenarios and datasets. This research centers on

advancing ADS capabilities by proposing a simulation framework and software tool for

machine learning consisting of a genetic algorithm (GA) with selection methods and

artificial neural network (ANN) architectures all configurable via a user interface (UI),

which guides the training and optimization of ANNs, allowing ADS policies to learn and

evolve rather than relying on existing datasets.

The Unity game engine provides the development environment for crafting the UI

to configure driving agents, and for selecting from three different 3D simulation scenario

environments of Pasadena, San Diego, and Tampa that are constructed from

OpenStreetMap data. The research experiments aim to enhance ADS performance

through simulation-based evaluation which aligns with the Intelligent Transportation

Systems Joint Program Office (ITS JPO) technical activities, and the National Highway

Traffic Safety Administration (NHTSA) vision for safety to accelerate the safe integration

of autonomous vehicles into the transportation system.

Simulation experiments using different GA and ANN configurations were

conducted in each of the 3D scenario environments. Analysis of the simulation results

revealed several significant patterns of evolutionary performance of ADS agents across

different parameter configurations, yielding varying levels of optimization success

across generations in the simulations.

iii

Primary Reader and Advisor: Larry D. Strawser PhD, Adjunct Faculty, Johns Hopkins

University, Whiting School of Engineering

Secondary Reader: In-Kyu Lim, PhD, PE, GDL Manager/Highway Research Engineer,

FHWA Office of Safety and Operations R&D, U.S. Department of Transportation

iv

Acknowledgements

Gratitude is deeply extended to Dr. Jim Coolahan for imparting the foundations of

Modeling and Simulation to me and its many applications in Systems Engineering, to

Kevin Dopart at the ITS Joint Program Office of the U.S. Department of Transportation

for his time and valuable insight into their automated vehicle research activities and

simulation areas being explored, and to Dr. Larry Strawser for serving as my advisor

throughout the entire process and who I had the pleasure of meeting at INCOSE IW

2019 in the same workshop.

I would like to thank my father, Harold T. Davis, for encouraging me to pursue

this master’s degree and his unwavering support, and to my supporting wife Kaori,

daughter Mana, and son Jin who continue to motivate me and bring a sense of purpose

into my life.

v

Contents
Abstract ...ii

Acknowledgements ...iv

List of Tables .. vii

List of Figures ... viii

Chapter 1 – Introduction ... 1

Automation and Safety .. 1

Bio-Inspired Artificial Systems ... 5

Genetic Algorithms ... 5

Artificial Neural Networks ... 6

Systems Simulation ... 7

Thesis Motivation ... 7

Chapter 2 – Methodology ... 9

Literature Review of Related Research ... 9

Genetic Algorithms and Neural Networks ... 9

Unity Engine-based Simulations ... 11

Research Hypotheses ... 17

Design Approach ... 18

Simulation Framework ... 20

Geo-Spatial Scenario Data .. 22

Chapter 3 – Experimental Design .. 24

Evolutionary Computation .. 24

Genetic Algorithm Design .. 25

Selection Methods ... 27

Tournament .. 28

Roulette Wheel ... 29

Elitist ... 29

Tournament + 20% Random .. 30

Neural Network Architecture .. 30

System Architecture ... 33

Car Physics Model ... 35

Sensors ... 38

Master .. 39

Simulator Manager .. 41

vi

Chapter 4 – Implementation ... 45

Scenario Environment Generation ... 45

Agent Car Model .. 48

User Interface .. 51

Neural Network C# Class .. 52

Neuron Layer C# Class ... 55

Genetic Algorithm C# Class ... 58

Recombine and Mutate .. 60

Chapter 5 – Results and Analysis .. 63

Pasadena Scenario ... 63

San Diego Scenario ... 65

Tampa Scenario .. 68

Chapter 6 – Conclusions and Future Research .. 71

Conclusions ... 71

Future Research .. 73

Bibliography .. 75

Appendix 1: Select UML Class Diagrams .. 79

1-1. Neural Network Class ... 79

1-2. Genetic Algorithm Class ... 80

1-3. Simulation Manager Class .. 81

Appendix 2: 3D Modeling and Physics .. 82

2-1. Box Collider .. 82

2-2. Wheel Collider .. 83

Appendix 3: Neural Network and Genetic Selection .. 85

3-1. Neural Network FixedUpdate() Method .. 85

3-2. Tournament C# Class ... 87

3-3. Elitist C# Class ... 89

3-4. Tournament + 20% Random C# Class ... 90

3-5. Roulette Wheel C# Class ... 92

Appendix 4: Aggregate Analysis of All Three Scenario Simulation Results 94

4-1. Correlation Analysis .. 94

4-2. Regression Analysis ... 94

vii

List of Tables

Table 1. Comparative simulation results of the Pasadena scenario 63
Table 2. Simulation results from the San Diego scenario .. 66
Table 3. Tampa simulation scenario results .. 68

viii

List of Figures

Figure 1. ADS levels in SAE J3016 (SAE, 2016). Reprinted from Automated Driving
Systems: A Vision for Safety (NHTSA, 2017, p. 4) .. 2
Figure 2. Safety Risk Management. From Preparing for The Future of Transportation:
Automated Vehicles 3.0. (USGPO, 2018, p. 36) ... 4
Figure 3. Experimental design process ... 19
Figure 4. Workflow of the simulation tool ... 20
Figure 5. Development flow of assets in Unity Engine .. 21
Figure 6. Transport Map and layers selection menu panel .. 22
Figure 7. Hillis's sorting networks. From An Introduction to Genetic Algorithms (p. 18) by
M. Mitchell, 1998, MIT Press. Copyright 1998. .. 24
Figure 8. Genetic Algorithm activity flow ... 26
Figure 9. Genetic Algorithm sequence flow ... 27
Figure 10. Tournament selection method .. 28
Figure 11. Roulette Wheel selection method ... 29
Figure 12. Elitist selection method .. 30
Figure 13. Feedforward Neural Network for this experiment ... 31
Figure 14. Artificial neural network flow of activity ... 32
Figure 15. Neural Network sequence of interactions ... 33
Figure 16. System architecture ... 34
Figure 17. DrivingSystem components.. 35
Figure 18. Sequence diagram of CarController interaction ... 36
Figure 19. Activity diagram of the CarController .. 37
Figure 20. Sequence diagram for the WallSensor ... 38
Figure 21. Master component logical flow of activity ... 39
Figure 22. Sequence diagram of Master and Manager ... 40
Figure 23. Main components of the simulation system ... 41
Figure 24. Activity flow for the simualtion Manager ... 42
Figure 25. State machine of the simulations system Manager 43
Figure 26. Sequence diagram of the user and simulation ... 44
Figure 27. Process flow of generating the scenario environments 45
Figure 28. Pasadena mesh model scenario environment ... 46
Figure 29. Overdraw visualization view ... 47
Figure 30. One-way box colliders to prevent counter flow driving 48
Figure 31. Sensors to detect obstructions in the environment 49
Figure 32. Magenta waypoint cubes are invisible during runtime 50
Figure 33. Splash start screen with Run Simulation, Options, and Load Data 51
Figure 34. Configuration UI of parameters for the simulation experiment 52
Figure 35. NeuralNetwork class .. 53
Figure 36. Switch logic statement for neuron layer ... 55
Figure 37. The NeuronLayer class structure ... 56
Figure 38. CalculateLayer method for propagating the neural network 57
Figure 39. GeneticAlagorithm class structure .. 58
Figure 40. Awake() and Start() methods ... 60

ix

Figure 41. RecombineAndMutate method for crossover and mutation 61
Figure 42. Desirable driving emerges after more than 500 generations 64
Figure 43. Population of agent cars select between two routes 67
Figure 44. ADS agents exploring more of the environment achieve higher fitness 69

Figure 2-1. Box Collider applied to the agent car body.. 82
Figure 2-2. Wheel Colliders applied to the agent car tires ... 83
Figure 2-3. Physics settings for the Wheel Collider in Inspector panel 84
Figure 3-1. FixedUpdate() method of the NeuralNetwork class 86
Figure 3-2. Tournament genetic selection method .. 88
Figure 3-3. Elitist genetic selection method ... 89
Figure 3-4. Tournament + Random 20% genetic selection method 91
Figure 3-5. Roulette wheel genetic selection method .. 92
Figure 3-6. Selection() method for fitness ... 93
Figure 4-1. Correlation analysis of all three scenarios .. 94
Figure 4-2. Max Fitness vs Neuron Layers regression analysis 94
Figure 4-3. Max Fitness vs Neurons per Layer regression analysis 95
Figure 4-4. Max Fitness vs Mutation Possibility regression analysis 95
Figure 4-5. Max Fitness vs Neurons per Layer regression analysis (quadratic) 95

1

Chapter 1 – Introduction

Today’s transportation technology is marking an autonomous future for society.

The U.S. Department of Transportation has a role to play in building and shaping this

future by developing a regulatory framework that encourages, rather than hampers, the

safe development, testing and deployment of automated vehicle technology [1]. The

National Highway Traffic Safety Administration (NHTSA) released A Vision for Safety, a

set of guidelines to promote improvements in the safety of Automated Driving Systems

(ADS). This voluntary guidance serves to assist designers of ADS technology to

analyze, identify, and resolve safety considerations prior to deployment using their own,

industry, and other best practices. Organizations are advised to use a comprehensive

systems engineering methodology to design and validate ADSs, with the primary

objective of ensuring they don't pose unacceptable safety hazards [1].

When evaluating the readiness of an ADS for public road use, organizations can

employ multiple testing methods, including virtual simulations, closed-course testing

facilities, and real-world road evaluations [1]. Aligned with this guidance, the research

presented here takes the virtual simulation approach to validation, as it can guide

organizations in evaluating how much simulation might be needed before conducting

tests on public roads [1].

Automation and Safety

Automated Driving Systems utilize advanced sensor arrays and adaptive

machine learning software algorithms that provide a holistic perception of environmental

2

surroundings enabling robust operation under diverse lighting, weather, and driving

scenarios [2]. These systems demonstrate dynamic adaptation to novel situations

through iterative software updates, which integrate insights derived from aggregated

operational data and prior experiential learning. The Society of Automotive Engineers

(SAE) classification system, shown in Figure 1, provides value in contextualizing the

current and potential future state of automation in driving systems like those modeled

and simulated in this experiment. Benchmarking against these standardized levels

enables envisioning the evolutionary trajectory and objectives for these systems over

time, charting progress in pursuit of the ultimate goal for human-like automated driving.

Figure 1. ADS levels in SAE J3016 (SAE, 2016). Reprinted from Automated Driving Systems: A Vision for Safety
(NHTSA, 2017, p. 4)

Though autonomous vehicles demonstrate considerable latent capacity to

augment productivity, mitigate collisions, traffic congestion, and reduce pollution,

government oversight is vital in managing and ensuring the smooth incorporation of

automated vehicles within the existing transportation infrastructure that will guarantee

3

compatibility with conventional vehicles and a wide range of road users [2], such as

pedestrians, bicyclists, and motorcyclists. With such diversity of stakeholders and the

expansive ecosystem of entities advancing ADS technologies, establishing a

generalized conceptual framework is essential to elucidate the distinctions between

developmental testing and full-scale deployment for public understanding. The

framework in Figure 2 can serve to facilitate structured discourse on strategies to

enhance safety protocols, mitigate risks, and maximize societal benefits arising from the

integration of ADS innovations [2].

Overarchingly, contemporary determinations concerning if and how to sanction

autonomous vehicle technologies will substantially impact their influence in transforming

transportation ecosystems [3]. The nature and extent of the prospective utilities afforded

by autonomous vehicle technologies will be contingent on the degree of automation

attained. To exemplify, select safety enhancements conferred by automated

functionalities such as automatic braking may be secured at modest levels of

automation, whereas the putative land use and environmental payoffs likely necessitate

more comprehensive automation reaching Level 4 status [3].

Studies have highlighted significant barriers to realizing fully self-driving Level 5

vehicles, including obtaining adequate on-road data capturing both optimal and

imperfect driving conduct from humans [4]. To enable autonomous vehicles to

independently handle end-to-end journey situations, driving datasets need to

incorporate substantial quantities of real-world edge cases beyond ideal conditions so

that automated skill can approach human adaptiveness and judgment. Hence procuring

4

ample heterogeneous data remains pivotal for advancing and validating versatile

autonomous capabilities.

Figure 2. Safety Risk Management. From Preparing for The Future of Transportation: Automated Vehicles 3.0.

(USGPO, 2018, p. 36)

Applying varied advanced algorithms through extensive research and

development to enhance ADS technology remains necessary to further their evolution.

Iteratively approaching the challenge from multiple angles can lead to enhanced

capabilities, overcoming current limitations. Advancing the field will enable minimizing

the risks of accidents, delivering a significant public impact from increased adoption of

reliable automated driving systems.

This research centers on advancing the state-of-the-art by applying such

algorithms for machine learning in the development of an application for simulating

5

automated driving systems at Level 4 and 5 automation by implementing a genetic

algorithm, to train and optimize artificial neural networks without the dependence of

existing driving datasets.

Bio-Inspired Artificial Systems

Genetic Algorithms

The precepts underpinning genetics and natural selection constitute the

conceptual basis for a computational optimization and exploration method termed the

genetic algorithm (GA), formulated by pioneering computer scientist John Holland

through research conducted during the 1960s and 1970s [5]. This biological inspiration

facilitates an adaptive search process wherein an initialized random assortment of

solution candidates evolves over successive iterations guided by specified selection

pressures toward maximal optimization of a fitness metric, analogous to the principle of

natural selection, thereby effectively minimizing an objective cost function [5].

Genetic algorithms mimic the process of natural selection to find optimized

solutions to complex problems that conventional mathematical optimization cannot

handle. In particular, genetic algorithms use random mutation, crossover of solution

components, and survival of the superior solutions to evolve generations of candidate

solutions tailored to a target problem. Through this evolutionary technique, genetic

algorithms provide an adaptive methodology to find very good, if not optimal, solutions.

Moreover, genetic algorithms have proven ability to optimize solutions for complicated

problems. An expanding trend connects this optimization capability with supplementary

artificial intelligence methods like neural networks [5], which offer distinct benefits.

6

Combining the adaptive optimization of genetic algorithms with the pattern

detection and predictive modeling of artificial neural networks creates a hybrid system

that utilizes the strengths of both approaches for enhanced handling of intricacy and

discovery of superior solutions. These genetic algorithms signify a unique strategy,

especially when integrated with complementary machine learning procedures, for

addressing multifarious problems intractable to traditional analytical approaches.

Artificial Neural Networks

Artificial Neural Networks (ANN) are computational frameworks designed to

approximate unknown numerical values through the systematic derivation of patterns

from observed data points, achieved by architecturally emulating the information

processing mechanisms inherent in biological neural systems [5]. In this biomimetic

paradigm, the biological neuron represents a processing unit acquiring numerous input

signals. These incoming signals are subject to adjustable modulation by synaptic

weights prior to aggregation. In essence, artificial neural networks seek to achieve

versatile function approximation by simulating the multi-input integrative behaviors of

organic neurons using tunable weighted connections. This neurobiological inspiration

enables neural networks to conduct nonlinear statistical data modeling for tasks like

machine learning classification, prediction and pattern recognition through exposure to

representative training data. By leveraging organizational principles from neuroscience,

artificial neural networks can extrapolate outputs for novel inputs after learning

correlations from samples.

7

This hybrid framework aims to leverage the optimization power of genetic

algorithms with the information processing strengths of artificial neural networks. The

integrated framework of an artificial neural network guided by the genetic algorithm

thereby seeks to capitalize on the unique merits of each method in order to engender

solutions surpassing those from the individual techniques alone.

Systems Simulation

Simulation involves constructing a representative prototype of an actual system

with which to perform exploratory experiments, enabling insight and comprehension of

how the system functions, and assessment of diverse operational tactics for managing

that system [6]. The simulation process allows for learning how a real-world system

behaves and for optimizing approaches to its operation. The model is the core concept

underlying simulations, encapsulating the key components, behaviors, and interactions

that enable replicating how the actual system functions. The structure and logic

captured in the simulation model give it the ability to imitate system functioning [7].

Models of genetic and neural machine learning processes have been created for this

thesis research for conducting computational experiments through a simulation

framework and software tool.

Thesis Motivation

A sustained intellectual curiosity in natural and biological systems, and their

biomimetic potential for engineering innovation has informed both my professional

trajectory and research aspirations. Previous participation in biomimicry organizations,

coupled with professional experience in human-centered interface design for software

8

systems, has equipped me to address the challenges of developing simulation tools that

enable researchers to explore biological systems within an engineering context.

This technical foundation, complemented by my Unity Certified Associate Game

Developer certification, has crystallized my objective to synthesize these disciplines to

advance the adaptability of simulation frameworks and accessibility of software tools,

particularly those integrating biologically inspired computational models.

All the simulation experiments were conducted using a Dell Precision 7810

workstation with dual Xeon 3.0GHz CPUs, 128GB of system RAM, and Nvidia GeForce

RTX 2080 GPU with 8GB of VRAM. Unity Engine/Editor and C# programming language

were the software tools used to develop the simulator application.

This research objective is to evaluate the performance of genetic algorithms in

optimizing artificial neural networks for automated driving systems in multiple

environments with increasing complexity. Implemented in Unity Engine, the scenario

environments are presented as 3D mesh models of U.S. cities using OpenStreetMap,

and the genetic algorithm and artificial neural network is applied to a controller of an

autonomous vehicle agent. The rest of the thesis is organized as follows: Chapter 2

introduces the methodology and experimental design used, Chapter 3 covers key

aspects of the system architecture and design, Chapter 4 deals with implementation of

the simulation environment, agent car models, genetic algorithms and artificial neural

network, and in Chapter 5, the experimental simulation is carried out and the results of

the experiments are analyzed. The thesis concludes in Chapter 6 with a summary of

achieved results and plans for future development.

9

Chapter 2 – Methodology

Literature Review of Related Research

Several research activities using Unity Engine-based simulation, autonomous

agents, genetic algorithms and artificial neural network optimization techniques exist in

the technical literature that served as reference sources in informing aspects of this

research and the experiments conducted.

Genetic Algorithms and Neural Networks

Ma, et al [8] uses neural networks optimized by genetic algorithms for logistics

demand forecasting. Fundamentally, the study argues that this hybrid approach can

improve forecasting accuracy to support intelligent logistics distribution systems. The

authors summarize a proposed model combining neural networks and genetic

algorithms for freight vehicle routing in complex urban settings. The primary point

emphasized is that genetic algorithms help optimize neural network weights for higher

precision forecasts. Testing results demonstrating over 96% accuracy are presented to

validate the methodology's feasibility for logistics planning and optimization tasks.

The research work of H. Ma [9] explored optimizing logistics distribution routes

using a hybrid genetic and neural network approach. The core proposition of the work

asserts that combining neural networks for processing data with genetic algorithms for

optimization provides effective route selection exceeding traditional methods. The

researcher summarizes a proposed model using neural networks to establish an

evaluation matrix for ranking route options based on cost, capacity, and traffic. Genetic

10

algorithms then operate on this matrix to identify optimal routes. This approach avoids

limitations of conventional algorithms and testing validates lower complexity, faster

convergence, and higher computational efficiency compared to baseline methods.

Feng and Zhu [10] research of using genetic algorithms to train neural networks

for self-driving car vision and navigation is of most relevance to this experiment. Feng

and Zhu’s central thesis is that genetic algorithms can replace traditional feedback

regulation in neural network training, enabling sample-efficient learning for tracking

tasks. The researchers summarize an approach using genetic algorithms to evolve

feedforward neural network weights over generations for visual tracking in a Unity

simulation. The significance of the research is that this method does not require large

datasets, and testing shows the trained network can guide an autonomous vehicle to

avoid obstacles and reach targets. Though directly related to the research in this

experiment, Feng and Zhu do not specify the ability to explore different configurations to

identify the most optimal performing solutions.

In the work of Lu and Kuang, an injury prediction model to enhance automatic

crash notification systems for faster emergency response was developed [11], which

combined genetic algorithms and neural networks to improve prediction accuracy over

other methods. The authors summarize an approach using National Highway Traffic

Safety Administration data to train a genetic algorithm-optimized neural network model

to categorize driver injuries from crashes. Analyzing correlations and using a hybrid GA-

NN method appear to increase reliability and outperform SVM, LSTM, standard NN, and

logistic regression models. Testing results demonstrating higher accuracy are presented

11

to validate the methodology's ability to optimize emergency medical dispatch through

injured driver classification.

The main theme of [12] is reviewing and analyzing the use of genetic algorithms

for railway system optimization. At the heart of the argument lies the claim that GAs

have emerged as a popular technique for addressing the complex, multi-objective

problems inherent in railway operations and design. The researchers reviewed highly

cited and recent studies applying GAs and hybrid GA approaches to diverse railway

challenges including scheduling, routing, forecasting, design, maintenance, and

allocation. Their views are that GAs can effectively handle the nonlinear, time-varying

nature of railway systems, and that hybridizing GAs with methods like particle swarm

optimization, ant colony optimization, and neural networks enhances capabilities. A

comprehensive bibliometric analysis of over 250 publications was presented to provide

a roadmap identifying opportunities and research gaps in using evolutionary algorithms

for railway optimization.

Unity Engine-based Simulations

In Proximal Policy Optimization Through a Deep Reinforcement Learning

Framework for Multiple Autonomous Vehicles at a Non-Signalized Intersection, D.

Quang et al uses advanced deep reinforcement learning to develop autonomous vehicle

control models for improving traffic flow efficiency in mixed-autonomy environments

[13]. They argue that leading autonomous vehicles, even at low penetration rates, can

help optimize mobility by reducing delays and improving average speeds at

intersections lacking traffic signals. Their research involved developing and testing a

12

proximal policy optimization reinforcement learning model to validate the benefits of

autonomous vehicles for non-signalized intersection control. Using the SUMO tool the

researchers demonstrated an approach that enables the reliable simulation of mixed-

autonomy scenarios, and that the results demonstrate clear traffic improvements from

integrating just a small percentage of autonomous vehicles.

Radwan, Sedky and Mahar research work uses reinforcement learning to train

autonomous vehicles in simulated environments as an alternative to risky real-world

data collection [14]. The foundational claim posits that Unity's ML-Agents toolkit enables

evaluating different reinforcement learning algorithms for obstacle avoidance in self-

driving cars. Their approach finds the optimal algorithm by testing proximal policy

optimization (PPO) and soft actor-critic (SAC) on virtual driving scenarios using single

and multi-agent training as well as camera and LiDAR sensors. They show that

simulation training mitigates risks and labeling efforts compared to real-world data, and

that the results demonstrate PPO and LiDAR outperform SAC and cameras in the

experiments.

Improving the safety and efficiency of deep reinforcement learning for

autonomous driving [15] is the central theme in the research of Cui et al. The central

thesis is that a double-bias experience replay approach allows agents to choose their

own driving learning tendency, enabling faster speeds while maintaining stability. This is

demonstrated by proposing a new loss function and applying double-bias experience

replay to DQN, DD-DQN, and QR-DQN algorithms thereby allowing agents to bias

experience sampling from safe or risky driving improves performance over single

13

experience replay. Testing on a Unity-based simulator demonstrates the proposed

approach enables agents to achieve higher rewards, increased speed, fewer lane

changes, and more stability during training.

The research done in Evaluation of Proximal Policy Optimization with Extensions

in Virtual Environments of Various Complexity focused on evaluating proximal policy

optimization (PPO) reinforcement learning for control in a racing game scenario [16].

This combined PPO with imitation learning and curiosity-driven exploration to improve

performance in completing racing circuits. Experiments were carried out in a custom

Unity racing game using PPO alone and with extensions. The researchers found that

hyperparameters tuning, learning curves, and inference metrics demonstrate PPO with

imitation learning and curiosity modules surpasses base PPO in driving the agent.

Saez et al also present research of direct relevance in using genetic algorithms

for automatic vehicle control, specifically focused on optimizing lap times in racing

scenarios [17]. Their view is that evolutionary computation techniques like genetic

algorithms can enable automated vehicle guidance and improve performance in

domains like racing where aerodynamics, fuel efficiency, and power output are critical.

This is shown by applying genetic algorithms to learn optimal driving policies that

minimize lap times across different circuits. Central to the research are the claims that

automated driving is an important capability with applications ranging from commercial

safety to racing optimization, and that genetic algorithms present a promising approach

for vehicle guidance learning in racing contexts where lap time is the primary objective.

14

Arrigoni et al presented work in real-time trajectory planning for autonomous

vehicles using nonlinear model predictive control optimized by a genetic algorithm [18].

The primary assertion underpinning the analysis is that this approach enables effective

obstacle avoidance and handling under various friction conditions with real-time

performance. The author succinctly captures an NMPC implementation using a

nonlinear single-track vehicle model and Pacejka tire formulas, with the NMPC problem

solved through a proposed genetic algorithm strategy. The main assertions put forward

are that simulations demonstrate robust performance under challenging conditions, and

computational analysis proves real-time feasibility.

Naveen et al explored developing an automated driving assistance system for

highways using deep reinforcement learning [19]. The overarching premise advanced is

that deep RL can enable driver assistance features like cruise control and automatic

braking to be extended for more complete vehicle autonomy in limited highway

scenarios. The text summarizes a proposed approach where a machine learning agent

leverages camera images and LiDAR data to make driving decisions through deep

reinforcement learning algorithms. Among the core argument outlined is that this

provides understanding of the surroundings to automate acceleration, braking, and lane

changing while avoiding collisions. Testing in a simulated highway environment is

presented to validate the methodology's ability to learn policies that deliver automated

highway driving assistance.

Optimizing robustness and performance of deep reinforcement learning networks

using genetic algorithms and neuron coverage [20] is featured in the research of Al-

15

Nima et al. Central to the author’s position is the idea that a proposed Genetic Algorithm

of Neuron Coverage (GANC) approach can optimize neuron coverage of DRL networks

by generating augmented training inputs. In brief, the work recaps an application of

GANC to self-driving car decision making, where reliability across diverse road views is

critical. Testing on a driving dataset demonstrates maximized neuron coverage via the

genetic algorithm produces superior driving accuracy over previous state-of-the-art

results. The pivotal point articulated focus on the use of GANC which leverages genetic

algorithms to increase neural coverage and augment training data, yielding more robust

DRL policies.

Training autonomous vehicles to navigate environments using neural networks

optimized by evolutionary algorithms was explored in the work by Samuel [21]. The

driving hypothesis of the text suggests that neural networks can steer cars based on

evolved weights from genetic algorithms. The analysis distills the essence of a 2D Unity

simulation where cars learn driving policies by genetically evolving neural networks over

generations. The principal idea presented revolve around standard feedforward neural

networks being trained through genetic algorithms to control steering, and that this

evolutionary approach enables cars to incrementally improve navigation skills. Testing

in simplified environments with just lanes and static obstacles is presented to

demonstrate the feasibility of the proposed technique. In essence, the text proposes

and validates using genetic algorithms to optimize neural network weights for

autonomous vehicle control, incrementally evolving driving proficiency over generations

in a simulated environment.

16

Application of Neuroevolution in Autonomous Cars explores training autonomous

electric vehicles through neuroevolution in simulated environments as an alternative to

large real-world datasets [22]. This highly relevant research maintains that genetic

algorithms like neuroevolution enable incremental optimization towards driving

proficiency without reliance on massive data. The research consolidates key points

about an approach using neuroevolution, a form of genetic algorithm, to evolve self-

driving policies in a physics-based Unreal Engine simulation. Key takeaways from the

analysis suggest that this evolutionary technique exploits serendipitous discoveries to

develop driving skills from scratch, provides generalizable capabilities transferable to

real-world applications, and offers a foundation for integrating other machine learning

methods. Testing in the simulated environment is presented to demonstrate the

feasibility of bootstrapping end-to-end autonomous driving through neuroevolution.

Muzahid et al employed reinforcement learning techniques like proximal policy

optimization (PPO) and soft actor-critic (SAC) to enable autonomous vehicles to safely

change lanes and avoid multiple vehicle collisions [23]. The work’s principal contention

revolves around both PPO and SAC successfully learning optimal driving policies for

collision avoidance in simulated environments, with SAC demonstrating greater data

efficiency but PPO providing more stable training. The discussion provides a condensed

overview of an approach where agents are trained using Unity and ML-Agents to

incrementally develop behaviors that allow smooth lane changing through sensing

proximity of surrounding vehicles and adjusting speed accordingly. The foundational

arguments advanced center on the 91-96% success rate of the trained agents in

avoiding collisions which demonstrates that reinforcement learning enables agents to

17

acquire robust driving policies for critical autonomous vehicle functions like lane

merging.

Research Hypotheses

In all of the previous research, there is a lack of UI tools for configuring different

genetic selection methods and neural network architectures to explore simulation

scenarios. It is here where this research contributes to advancing the simulation domain

and autonomous systems research. To assess the safety of ADS technology in

alignment with NHSTA objectives, this software tool will allow for testing the following

hypotheses:

• Increasing the number of neurons and neuron layers leads to higher

maximum navigational fitness for the cars.

• Higher mutation rates result in more exploration of the search space but

lower average population fitness over generations.

• Using certain selection methods maintains higher genetic diversity

compared to other selection methods.

Furthermore, the dataset-independence of the experiment has the advantage of

also exploring scenarios not contained in existing datasets, thereby being able to adapt

and learn from the environment. Such an approach regardless of positive or negative

results will allow for the evaluation of virtual simulations prior to on-road testing.

18

Design Approach

Executing illuminating simulation-based systems research necessitates following

a rigorous experimental research protocol encompassing model construction, simulation

execution, and results analysis activities to reliably evaluate theoretical system behavior

predictions. Virtual experiments using computer simulations to study natural or artificial

system phenomena require clearly defining the simulation and modeling methodology to

facilitate constructing an appropriate conceptual system representation. Running the

simulation model experiment then produces informative results if the simulation process

accurately captures the dominant components and interactions of real-world systems.

This research applies an experimental design approach illustrated in Figure 3

that will allow for evaluations of simulation scenarios to better understand the factors

that influence a particular ADS configuration for safe drivability. The user interface (UI)

of the simulator tool will enable researchers to identify and configure factors that impact

simulation experiments. Following a systematic approach, the process begins with a

screening design that incorporates key configurations likely to influence outcomes. By

isolating the most critical factors, the system then transitions to an optimized

experimental design phase for further refinement.

19

Figure 3. Experimental design process

The main objectives of this experimental research are as follows:

• Developing a genetic algorithm and neural network architecture for machine

learning to enhance policy optimization of automated driving systems without

dependence on large datasets.

• Creating a user interface (UI) for exploring different genetic selection methods

and neural network architecture configurations.

• Investigating iterative improvement of autonomous vehicle controllers across

generations via bio-inspired evolutionary algorithms for adaptive policy search in

the machine learning training simulations.

20

Control variables are:

• Genetic Selection Methods.

• Neurons and Neuron Layers.

• Mutation Possibility and Rate.

Figure 4 illustrates the general flow of the simulation software tool. Accessible

from the start screen is the configuration settings UI with options to adjust several

parameters of the simulation.

Figure 4. Workflow of the simulation tool

Simulation Framework

Unity Engine forms the core technology of the framework depicted in Figure 5

from which this simulation tool is built. In Unity, Scenes are asset bundles that

compositionally aggregate GameObjects [24]. GameObjects are the fundamental

21

elements which encapsulate graphical and functional components [25], and through

Scripts, GameObjects can respond to user input, drive physics simulations, render

graphical effects, and implement custom character behavior [26]. Together, they provide

the working canvas for game and application content by orchestrating collections of

modular GameObjects to construct interactive environments using scripting logic.

Specifically, the interplay between configurable GameObject components, Scene

aggregation, and cross-cutting scripts constitutes the core mechanism for developing

Unity gameplay and interactive simulations by linking interface appearance and

underlying behavior across objects to enable manipulating environments, triggering

events, producing graphics, and defining machine learning agents.

Figure 5. Development flow of assets in Unity Engine

Once the plans and designs are implemented in Unity, simulation experiments of

various scenarios can be carried out and results analyzed.

22

Geo-Spatial Scenario Data

In order to create training environments for the machine learning agents in the

simulations, OpenStreetMap (OSM) geospatial data was selected which uses tile map

layers to display different features and annotations on top of the base geographic map.

The map uses a topological data structure composed of Nodes, Ways, Closed Ways,

Areas, and Relation all of which have tags [27]. OpenStreetMap Carto (Standard) is an

open-source stylesheet that renders OpenStreetMap vector data into customizable

raster map tiles [28], CyclOSM focuses on information relevant for bikers like trails and

parking [29], while the Transport Map style as seen in Figure 6 spotlights global transit

networks including railway lines and bus routes [30].

Figure 6. Transport Map and layers selection menu panel

ÖPNVKarte is a public transit-centered renderer underscoring routes and stops

[31], and the Humanitarian map style highlights water sources, lighting, roads, social

services and other assets useful for emergency response [32]. These alternative

23

renderers allow tuning map visualization for particular use cases while still leveraging

the comprehensive content of the OpenStreetMap database.

Using a hard selection criterion of global coverage, traffic demands, reliability,

and up-to-date data [33], Pasadena, San Diego, and Tampa metro areas were selected

for the research experiments to construct simulated urban driving scenarios for

investigating automated vehicle systems, with the bounding box of the target regions

encoded as latitude/longitude coordinates in JSON objects to facilitate procedural

generation in the Unity Engine. This OSM data was then imported into Unity by way of a

special plugin tool that converts it into a 3D mesh model. Chapter 4 discusses the

implementation details of this process.

24

Chapter 3 – Experimental Design

Evolutionary Computation

A number of computer scientists independently investigated evolutionary

phenomena with the concept that the principles underpinning biological evolution could

be harnessed as an optimization technique for solving complex engineering challenges

[34]. The fundamental idea across these systems was to simulate the process of natural

evolution to evolve a pool of candidate solutions for a target problem, employing

computational analogues of genetic variation mechanisms and natural selection

pressures seen in nature.

Figure 7. Hillis's sorting networks. From An Introduction to Genetic Algorithms (p. 18) by M. Mitchell, 1998, MIT

Press. Copyright 1998.

25

Genetic Algorithm Design

In his seminal 1975 book Adaptation in Natural and Artificial Systems, Holland

put forth genetic algorithms, which are modeled on an abstract depiction of biological

evolution, as an adaptive optimization search method. This established the theoretical

framework for a computational technique to evolve new populations of solution-

encoding "chromosomes" (bit-strings) from an initial population using selection

principles combined with genetics-inspired operators like crossover, mutation and

inversion. Since then, many other researchers have applied genetic algorithms in their

work, such as can be seen in Figure 7 which shows three example experiments in

genotype representation of sorting networks by W. Daniel Hillis, who used a genetic

algorithm in designing an optimal n = 16 sorting network.

In this experimental research, the genetic algorithm operations that will be used

in order to evaluate and select the best solutions are as follows:

1. Fitness function: it evaluates the performance of each candidate.

2. Selection: it chooses the best individuals based on their fitness score.

3. Recombination: it replicates and recombines the individuals.

4. Mutation: this operator randomly flips some of the bits in a chromosome which

can occur at each bit position in a string with some small probability.

Figure 8 illustrates an activity flow diagram model detailing the steps in the

process of the genetic algorithm for these experiments.

26

Figure 8. Genetic Algorithm activity flow

27

Figure 9. Genetic Algorithm sequence flow

In this system, the genetic algorithm supervises the evolutionary procedures of

selection, crossover, and mutation. Figure 9 illustrates how it governs the probabilities

of mutation and crossover, as well as maintaining records of all phenotypic traits for

each vehicle-encoded solution across every iteration of the evolving population. By

managing variation rates and cataloging attributes, the algorithm directs optimization

towards incrementally improved subsequent generations.

Selection Methods

The objective of selection in genetic algorithms is to identify the fitter solution

chromosome representations in a population and allow them to pass on features to

subsequent generations, gradually improving offspring fitness over iterative evolution

28

[34]. The right equilibrium between exploiting the fittest solutions via selection and

exploring through variation operators facilitates steady refinement rather than premature

convergence or stagnation. Managing this tension allows fit genomes to propagate

beneficial traits while maintaining enough diversity through mutation and recombination

to continue optimization momentum. The four selections methods used in these

experiments are detailed below:

Tournament

The Tournament selection method in genetic algorithms works by running

"tournaments" among a few individual chromosomes randomly chosen from the

population seen in Figure 10, and selecting the winner of each tournament to be a

parent for the next generation.

Figure 10. Tournament selection method

29

The tournament size controls the selection intensity - larger values make it more

likely the fittest will get selected.

Roulette Wheel

The Roulette Wheel selection method in genetic algorithms works by assigning

all individuals in the population a slice of a roulette wheel proportional to their fitness

score as shown in Figure 11. Then the wheel is virtually "spun" multiple times to

randomly pick individuals based on their slice size to be parents for producing the next

generation.

Figure 11. Roulette Wheel selection method

Elitist

In Elitist, the top 50% supplements existing selection techniques in genetic

algorithms by preserving several top-performing solutions per generation [34]. This

30

mechanism ensures the evolutionary search retains previously discovered peaks while

seeking potentially superior candidates as depicted in Figure 12, balancing exploiting

the current best with exploring uncharted landscapes. By safeguarding hard-won gains

against destructive variation, elitist enhances traditional selection approaches for

improved genetic algorithm reliability and efficiency.

Figure 12. Elitist selection method

Tournament + 20% Random

Similar to the Tournament, this selection method uses tournament selection for

pairing parents by fitness, along with mutation and recombination operators that clone

the elite chromosomes, reset the bottom 20% portion, and crossover the middle

chromosomes. The algorithm tries to balance retaining an elite specimen, recombining

good chromosomes, and introducing randomness for continued evolution over

generations.

Neural Network Architecture

A basic feedforward artificial neural network comprises interconnected neurons

over weighted links that activate based on input signals propagating unidirectionally

through the network layers, roughly imitating biological neural activation flows [4]. It

31

takes an input activation pattern that spreads across weighted connections toward the

output layer, mimicking how neural networks in the brain process signals. The

feedforward-only architecture without feedback loops differs from recurrent networks

allowing two-way layer activation flows.

Each of the ADS agents in this simulation system utilizes a personalized neural

network responsible for feeding sensor data forward in order to dictate steering and

acceleration outputs as shown in Figure 13. This recursive tuning methodology, known

as feedforward propagation, ingests perceptual information detailing proximities to

environmental contours, then updating connection strengths through feedforward

passes that accept sensory data and output driving controls.

Figure 13. Feedforward Neural Network for this experiment

Each ADS agent learns implicit policy mapping scenarios to advantageous

actions, bypassing hand-coded rules. For this particular system, the artificial neural

32

network architecture flow of activity is illustrated in Figure 14. Appendix 1 visually

diagrams the structure and relationships of the NeuralNetwork class.

Figure 14. Artificial neural network flow of activity

33

Figure 15. Neural Network sequence of interactions

Successive invocations will traverse the computational graph from input layer

through hidden layers to the steering and acceleration output layer as the sequence

model in Figure 15 illustrates. The system thereby avoids hand-authored control logic in

favor of flexible data-driven controls mediated by optimized network weights. Weight

inheritance and mutation is implemented between generations to enable online

evolution of control policies with gradually accruing task proficiency. This neural network

infrastructure offers a pathway toward sophisticated and adaptive autonomous systems

capable of responding sensitively to complex scenarios.

System Architecture

Figure 16 focuses on defining the critical components both inside and external to

the system boundary, as well as the key inputs and outputs that drive the simulation

scenarios. It serves as a concise yet comprehensive architectural map of how the major

pieces fit together.

34

Figure 16. System architecture

The SimulatorTool sits within the system boundary and serves as the core

simulation engine that runs the driving scenarios. External entities feed data and

functionality into the SimulatorTool. This includes 3D visual assets like cars and

environments, machine learning logic coded in C# for genetic algorithms and neural

networks, a Manager module to coordinate the simulation, and a User that provides

real-time inputs. Simulation data components exist outside the SimulatorTool to store

the scenario configurations and output performance results. The Game File stores setup

parameters in XML, while Results hold text summaries of the simulation runs.

35

Car Physics Model

Figure 17 illustrates the architecture and interactions of the DrivingSystem

comprised of four key components - the CarController, Input, WheelColliders, and

Rigidbody.

Figure 17. DrivingSystem components

36

The CarController is the main component responsible for controlling the car.

Interactions in Figure 18 show how it relies on the other three components:

Figure 18. Sequence diagram of CarController interaction

• Input: component that handles all user input and control schemes, providing

steering and acceleration values to the CarController.

• WheelColliders: contains the wheel collider physics models that handle traction,

friction, and suspension. The CarController sets torques and steering.

• Rigidbody: the main physics component that handles momentum and collision

response on the car. The CarController adjusts its velocity each frame.

Together, these components enable realistic car driving physics and handling

within the simulation game. The CarController component orchestrates the rest -

37

retrieving user input, applying physics forces on wheel colliders and Rigidbodies, and

adjusting velocity based on steering. Figure 19 shows that on Start(), the system

components are initialized to get the car ready for driving. Then in each frame, user

input is retrieved to determine values for steering and acceleration.

Figure 19. Activity diagram of the CarController

38

Sensors

Figure 20 shows the discrete sequence of operations that execute over the

lifetime of a WallSensor. When Start() initializes the class, the FixedUpdate() method

engages in a repetitive game loop. Rays are then cast out which senses the

environment and distances recorded depending on collision detection results.

Figure 20. Sequence diagram for the WallSensor

39

Master

Master component controls the step-by-step procedural logic to setup, execute,

evolve cars over generations and collect results from the complete simulation run. The

activity flow diagram in Figure 21 shows how the system starts by initializing a new

simulation run, then loading configuration parameters that govern how the simulation

will proceed - number of cars, neural network topology, and selection pressures.

Figure 21. Master component logical flow of activity

40

Next, the main simulation loop begins, bounded by the condition - "Generation <

Limit". Each iteration represents a generation in the evolution timeline. The cars

compete and perform in the simulation, after which their fitness is evaluated based on

criteria of distance covered, speed and collision avoidance. After configuration, the key

simulation objects of the neural networked agent cars and the simulation environment

are initialized. Based on fitness, the top performers are selected to seed the next

generation. Selection pressures push the population towards agent cars with better

performance over generations. The cars are evolved via crossover and mutation of their

neural networks. Key stats get saved, Figure 22, after each generation to analyze

simulation progress.

Figure 22. Sequence diagram of Master and Manager

The iterative evolution stops when the generation limit is hit. Finally, the model

saves the results - the evolved cars and their brains, stats on the multi-generational

progress and learnings. These can inform future simulations.

41

Simulator Manager

At the heart of the system is the Manager component, which acts as the core

coordinator. It interacts with and relies on every other component. The Track represents

the OSM data terrain which the Manager utilizes to setup and configure each scenario.

Key to the core behavior are the agent cars which the Manager instantiates, each agent

encapsulating the driving logic and integrated with a neural network that enables the

machine learning capabilities. Behind the scenes, a genetic algorithm component

handles the optimization and evolution of the agent car neural networks over

generations to optimize performance. For visualization, the Manager directly

coordinates with the Display to render the game simulation and provide user feedback.

Figure 23. Main components of the simulation system

The unidirectional dependencies, with the Manager as the orchestrator, and the

other components focused on specific functions as modeled in Figure 23 shows

separation of concerns that provide flexibility to enhance different aspects like the

42

machine learning logic, tracks, and visualization independently. Figure 24 shows the

process of the simulation manager initializing the game state, then checks if loading

from a saved state. The agent cars are instantiated next before entering the game loop.

Figure 24. Activity flow for the simualtion Manager

43

The loop continues iterating as shown in the state machine of Figure 25,

representing the running simulation, until the game over condition is reached based on

various stopping criteria. After the loop, fitness and neural networks are saved,

concluding the simulation.

Figure 25. State machine of the simulations system Manager

44

The Manager coordinates the saving of game data into a GameSave object

illustrated in Figure 26. Similarly, for LoadGame(), the Manager retrieves the saved

state data from the GameSave providing it back to the Manager, which then updates its

internal state, effectively loading the previous game state.

Figure 26. Sequence diagram of the user and simulation

45

Chapter 4 – Implementation

Scenario Environment Generation

OpenStreetMap (OSM) data is imported into Unity Engine using the Global

Roads & Traffic plugin which connects to Overpass API. The Overpass API web

database interface allows clients to send queries delineating map elements of interest

based on constraints like location, feature type, tags, proximity and receive matching

OSM entities per the defined selection criteria [35]. The plugin converts OSM data into

optimized Unity meshes by downloading OSM map data for a specified region as a

JSON file via a built-in editor tool [36] as shown in Figure 27, parses the JSON data and

extracts relevant node, way and relation information about roads, intersections, bridges

and other infrastructures, then adds height data, applies textures and materials to

finalize mesh model segments as can be seen in Figure 28.

Figure 27. Process flow of generating the scenario environments

46

Figure 28. Pasadena mesh model scenario environment

The Overdraw shader mode in Unity shown in Figure 29 is used to visualize

rendering performance by highlighting overlapping draws during runtime, or inefficient

areas with too many redundant fragment shader executions. The Overdraw shader

mode helped optimize performance of these complex urban city mesh models in Unity

by identifying buildings/objects that are being drawn redundantly or unnecessarily. This

guides rendering optimization efforts to improve graphics performance and efficiency.

Scene entities like streetlamps and other traffic infrastructure assets can be

repositioned if showing wasteful overlapping draws.

47

Figure 29. Overdraw visualization view

In this Unity-based driving simulation, collider objects play a key role in defining

drivable road surfaces and navigation paths for ADS agent vehicles. Polygon colliders

were used to precisely outline the shape and boundaries of roads, highways, and

alleyways that are viable for vehicles to traverse. Box and mesh colliders were applied

to the environment to approximate more complex irregular street geometry. The

machine learning navigation system detects this collider network to identify possible

driving paths. Vehicle controller scripts then Raycasts downwards against the detected

ground colliders to discern the slope and physics material properties of roads to

influence speed, gear changing and handling. The presence and contour of colliders

essentially signifies drivable terrain.

48

Figure 30. One-way box colliders to prevent counter flow driving

Trigger colliders around intersections, parking spots and garages allow ADS

agent cars to slow down, stop or take turns appropriately. Road and lane directionality

can also be encoded via one-way colliders preventing counter flow as shown in Fig 30.

This collider setup provides key environmental affordances for guiding autonomous

vehicle decision making and maneuvering for realistic road-constrained simulation

driving, from navigation meshes for high-level pathing to physical materials and triggers

for low-level control.

Agent Car Model

The ADS agent car is a GameObject that has several C# scripts attached to it

that provide the required functionality to navigate, analyze and learn the environment.

The main scripts are as follows:

49

• CarController: script handles the car's physics, taking input for steering

and acceleration and applying forces to the wheel colliders.

• WallSensor: script is positioned at the front and shoots Raycasts out in

front of the agent car, Figure 31, to detect the environment and provide

distance input data to the neural network.

• NeuralNetwork: script which initializes the network layers and neuron

counts based on user configuration settings. It takes the input data, runs it

through the network calculations, and outputs steering/acceleration values

to feed back to the CarController.

• FitnessMeter: script has a Transform variable assigned to track the agent

car's position for fitness evaluation. On every frame, it calculates the car's

distance to the current waypoint - magenta cubes in Fig 32 - on the road

to generate a fitness score.

Figure 31. Sensors to detect obstructions in the environment

50

These scripts work together on each ADS agent car instance during simulations.

The GeneticAlgorithm script is on a separate GameManager object, instantiated once. It

contains evolution logic that operates on the NeuralNetwork components after each

simulation, to produce the next generations.

Figure 32. Magenta waypoint cubes are invisible during runtime

When the simulation ends, the GeneticAlgorithm takes the fitness scores for

each agent car, sorts them, selects parents, and performs crossover and mutation

based on the NeuralNetwork weights and biases. Then it respawns mutated cars to

evolve optimized driving behavior over generations. The scripts allow the neural

networks to control the car physics along with colliders detailed in Appendix 2, while

evolution tunes the neural networks to improve based on the car’s fitness in navigating

the infrastructure and waypoints.

51

User Interface

Upon tool start up, a splash screen with a set of three choices are provided, as

shown in Figure 33. Run Simulation, which has default settings, Load Data of previously

saved and exported simulations to use in different scenarios, or configure a scenario in

Options. The user interface for Options shown in Figure 34 is where the parameters for

simulation scenarios can be configured. The main parameters are:

• Genetic Algorithm: quantity of agent cars and the selection rules.

• Mutation Chance: probability (30%-70%) and rate (2%-4%) of mutation.

• Neural Network: quantity of neuron layers and neurons per layer.

• Select Level: the three scenario environments for the simulations.

Figure 33. Splash start screen with Run Simulation, Options, and Load Data

52

Figure 34. Configuration UI of parameters for the simulation experiment

Neural Network C# Class

The NeuralNetwork class defines the neural network that controls the car in the

simulation. As illustrated in Figure 35, the key data members are the NeuronLayers

array, which holds the layers of neurons; the m_CarId field which identifies which car

this network controls; data members that store the number of hidden layers, total

neurons, inputs, along with m_TransferData that holds the neuron outputs during

forward propagation. Additionally, m_CarInputs stores the input states for the neural

network that represents the current state of the car. The m_Bias field adds a bias value

to the weighted inputs of each neuron, and CarController is a reference to the

component that handles moving the car. The final output layer is defined in m_Control

which holds the two key outputs: steering and acceleration control values that act as the

53

final outputs to physically drive the car in the simulation. This NeuralNetwork class

encapsulates the layers, connections, and data of a neural network that takes input data

about the car’s state, passes that data through hidden neuron layers, calculates output

control values used to drive the car via the CarController component reference.

Figure 35. NeuralNetwork class

54

The Start() method initializes the neural network that will control the ADS agent

car. It begins by setting the bias term to the global bias specified in Master and gets the

ID of the car controller this neural network will control. It then sets the number of hidden

layers and neurons per layer based on the global configuration in Master. Additional

details regarding this process can be found in Appendix 3.

Next, it determines the input count - this will be the number of car sensors plus

an additional input depending on whether navigation data is enabled. With the topology

defined, the method allocates the transfer data array which will hold neuron outputs

during forward propagation and initializes the NeuronLayers array which holds the

different neural network layers.

The switch statement shown in Figure 36 constructs the correct layer architecture

based on whether there are 0, 1 or 2+ hidden layers. If loading previously saved data, it

iterates through each neuron and layer, setting the weights to values loaded from the

Manager. Start() initializes the neural network topology, neuron layers, as well as weight

values - configuring an appropriate neural network structure to control the ADS agent

car based on global configuration parameters.

55

Figure 36. Switch logic statement for neuron layer

Neuron Layer C# Class

The NeuronLayer class defines the base elements and functionality for a layer of

neurons within the neural network. It will be further extended by concrete neuron layer

implementations. The key properties and fields shown in Figure 37 define the number of

neurons in this layer, number of input values each neuron receives, a bias value, and

most importantly the neuron weights matrix. The constructor method initializes these

56

fields and allocates a two-dimensional array to represent the weights matrix. Each

neuron in the layer has a row, and each row has a weight value per input, plus one

extra weight for the bias term. This base class constructor calls InitWeights() which will

be defined in subclasses to initialize the starting weights values.

Figure 37. The NeuronLayer class structure

57

The InitWeights() method initializes the weights matrix for the layer with random

values between -1 and 1. It iterates through each neuron row, and within each row sets

every input weight including the bias weight to a random number in that range. Getting

good initial weight values is important for the efficient training of neural networks.

The CalculateLayer() method performs the main computational logic during

neural network propagation. As shown in Figure 38, for each neuron, it calculates the

weighted sum by multiplying the inputs by their corresponding weights in that neuron's

row. It adds the bias term multiplied by its weight as well. This weighted sum is then

passed to the layer's activation function, defined in the abstract Activate() method. The

activations from each neuron are stored in the layer output array, which is finally

returned.

Figure 38. CalculateLayer method for propagating the neural network

58

 Together these methods define the learnable parameters and functional logic of

a neural network layer. Concrete child classes specialize the activation function and

optionally the weight initialization. By encapsulating these basic behaviors, NeuronLayer

provides an extensible baseline to implement different layer types.

Genetic Algorithm C# Class

The abstract GeneticAlgorithm class handles the main evolution operations of the

population over each generation by selecting fitter individuals, recombining them to

Figure 39. GeneticAlagorithm class structure

59

produce offspring, introducing random mutation, and replacing less fit individuals as

specified in Figure 39. This iterative process optimizes the population to find improved

solutions to the target problem.

The Awake() method in Figure 40 initializes key parameters like population size,

and mutation settings from the simulation configuration. The Start() method allocates

the data structures to store the population - CarNetworks array stores the neural

network models for the population, FitnessRecord struct stores fitness information for

each agent car in the population to track performance, and CarPairs stores parent pairs

selected for breeding new ADS agent cars each generation. The FixedUpdate loop runs

when the current generation finishes (all cars frozen). It begins by saving the neural

networks of the current population then sorts them by fitness. It calculates population

statistics and invokes the selection process to pick optimal parents to breed the next

generation. This continues for multiple generations, evolving better performing agent

cars over time. C# code details for each of the selection methods used in the genetic

algorithm can be found in Appendix 3.

60

Figure 40. Awake() and Start() methods

The SavedCarNetworks loops through the entire 4D array of neural network

weights for the population and copies the current values from the car networks into it,

saving their state for the next generation. This preserves the "genetic material" - the

weight parameters - before modification. It acts as a gene pool for crossover. This

method ensures the structure is initialized properly in the first generation.

Recombine and Mutate

The RecombineAndMutate() method implements the core genetic operators of

crossover and mutation to produce new neural networks for the next generation. Figure

41 shows how It loops through all the weights of each network, and for the top fitness

61

individual, copies its weights unchanged to preserve the current best. For others, it

randomly picks one parent index from the breeding pairs, and has a MutationChance

probability of mutating those weights by a random factor within range. Otherwise, the

weights get directly copied. This mixes parental genetics to produce new variety in

neural networks and explore the solution space of new high-performing configurations.

Figure 41. RecombineAndMutate method for crossover and mutation

62

In essence, crossover propagates components from fit parents, while mutation

introduces new traits. Recombination without mutation would reduce the search space

rapidly, while only mutation without crossover loses good solutions discovered so far.

Using both allows balanced exploitation of current peaks versus exploration of new

possibilities. The interplay allows continual improvement of neural networks over

generations to maximize the fitness metric. Tracking stats monitors evolution direction,

while saving top performers passes on beneficial genetics unchanged. This evolves

neural networks tailored to the problem.

63

Chapter 5 – Results and Analysis

The simulation results present a comparative analysis of 16 distinct neural

network architectures with varied genetic selection methods, across three scenarios,

each exhibiting varying configurations and training parameters. The data reveals

notable variations in performance and structural characteristics across these

configurations.

Pasadena Scenario

PSim1 demonstrated superior performance as shown in Table 1, with the highest

maximum fitness value of 179, though its median fitness of 33 suggests considerable

variance in outcomes. This configuration utilized an 8-layer neural network architecture

with 6 neurons per layer and implemented Tournament selection for genetic

progression. After 500 generations, desirable driving behavior emerged in more ADS

agent cars as shown in Figure 42.

Table 1. Comparative simulation results of the Pasadena scenario

64

In contrast, PSim2 and PSim3 exhibited relatively modest performance metrics,

with maximum fitness values of 23 and 17 respectively. Despite PSim3's more complex

neural network architecture (8 layers, 20 neurons per layer) and hybrid selection

strategy (Tournament+ 20% Random), it achieved the lowest median fitness of 5.

PSim4 and PSim5 showed intermediate performance levels, with maximum

fitness values of 66 and 67 respectively. Notably, PSim5 employed the simplest neural

network architecture (2 layers, 2 neurons per layer) while maintaining the highest

mutation possibility at 70%, suggesting that architectural complexity may not directly

correlate with performance optimization in this context.

Figure 42. Desirable driving emerges after more than 500 generations

The mutation rates across all simulations remained relatively consistent (2-4%),

indicating a controlled approach to genetic variation. The diversity in genetic selection

65

methods (Tournament, Elitist, Roulette Wheel) provides valuable comparative data on

selection strategy efficacy in evolutionary algorithms.

These results indicate that architectural complexity does not directly correlate

with performance effectiveness, as evidenced by the superior performance of simpler

configurations in some instances. The data suggests that the interplay between neural

network architecture, mutation parameters, and fitness outcomes is highly non-linear

and merits further investigation to determine optimal configuration strategies that would

significantly influence evolutionary outcomes in this simulation context.

San Diego Scenario

The San Diego Scenario simulation results also offer valuable insights into the

interplay between neural network architecture, mutation parameters, and genetic

algorithm selection strategies.

Looking at the performance metrics in Table 2, SDSim3 achieved the highest

maximum fitness of 144, employing a moderately complex architecture with 7 layers

and 5 neurons per layer. What makes this configuration particularly interesting is its use

of a Roulette Wheel selection method, combined with balanced mutation parameters

(60% possibility, 3% rate). This suggests that probabilistic selection methods can

effectively guide evolutionary optimization when paired with appropriate neural network

structures. Behavior such as half the population of agent cars selecting different driving

routes seen in Figure 43 was a notably observation, demonstrating exploration of

optimal navigation paths over each generation.

66

Table 2. Simulation results from the San Diego scenario

Close behind in performance are SDSim6 and SDSim7, with maximum fitness

values of 143 and 142 respectively. Despite their similar performance outcomes, these

configurations showcase dramatically different architectural approaches. SDSim6

implements the most complex structure with 10 layers and 6 neurons per layer, while

SDSim7 opts for a much simpler design with just 3 layers and 6 neurons per layer. Both

utilize the Elitist selection strategy, though with different mutation parameters,

suggesting that this selection method can be effective across varying neural network

architecture complexities.

A particularly intriguing case is SDSim4, which employs a unique hybrid selection

approach combining Tournament selection with 20% random inclusion. Despite having

the simplest neural network architecture (1 layer, 1 neuron per layer), it achieved a

respectable maximum fitness of 131. However, its notably low median fitness of 5

indicates high performance volatility, possibly due to the increased randomness in its

selection method.

67

SDSim5 stands as an outlier in terms of performance, achieving only a maximum

fitness of 39 despite having a moderate architecture (3 layers, 9 neurons per layer).

This configuration uses traditional Tournament selection with conservative mutation

parameters (40% possibility, 2% rate), suggesting that certain combinations of selection

methods and mutation rates may lead to suboptimal outcomes.

Figure 43. Population of agent cars select between two routes

The relationship between architectural complexity and performance shows no

clear linear correlation across these simulations. Instead, the data suggests that the

effectiveness of a configuration depends on the harmonious interaction between neural

network architecture, mutation parameters, and genetic selection strategy. These

findings challenge conventional assumptions about neural network design and

68

emphasize the importance of considering selection methods as a crucial component in

evolutionary neural network optimization.

These results provide valuable insights for future research directions, particularly

in understanding how different genetic selection strategies might be optimally paired

with specific neural network architectures and mutation parameters to achieve desired

performance outcomes.

Tampa Scenario

In the Tampa Scenario, TSim2 emerged as the most effective configuration,

achieving a remarkable maximum fitness value of 269 while maintaining a median

fitness of 26. Table 3 shows this superior performance was achieved with a relatively

simple neural network architecture (2 layers, 3 neurons per layer) and Tournament

selection method, operating at a 60% mutation possibility and 2% mutation rate. This

high fitness score can be attributed to agent cars successfully exploring more of the

environment as Figure 44 shows a few driving further in the distance.

Table 3. Tampa simulation scenario results

69

TSim3 demonstrated the second-highest performance with a maximum fitness of

187, though its median fitness of 14 was the lowest among all configurations. This

simulation employed a more complex neural network architecture (4 layers, 12 neurons

per layer) and a hybrid selection strategy of Tournament with 20% Random.

TSim1 achieved moderate success with a maximum fitness of 114 and the

second-highest median fitness of 27. Its configuration utilized a neural network with 3

layers and 6 neurons per layer, implementing an Elitist selection strategy.

Figure 44. ADS agents exploring more of the environment achieve higher fitness

TSim4, despite having the most complex neural network architecture (6 layers, 8

neurons per layer), recorded the lowest maximum fitness of 50, though it maintained the

70

highest median fitness of 28. This configuration employed a Roulette Wheel selection

method with a 60% mutation possibility.

The results suggest that architectural complexity may not be directly proportional

to performance optimization in this context. Furthermore, the data indicates that simpler

neural network structures, when paired with appropriate selection methods and

mutation parameters, can yield superior results in evolutionary algorithms. The variation

in median fitness values across configurations (ranging from 14 to 28) provides valuable

insights into the stability and consistency of different evolutionary strategies.

71

Chapter 6 – Conclusions and Future Research

Conclusions

This thesis research in machine learning and systems simulations applied

genetic algorithms to refine neural network architectures for automated driving system

agents to maximize driving fitness performance over generations. Simulation

experiments were run with differing parameters to study their impact, with results

demonstrating that evolutionary algorithms can optimize policies to improve driving

performance without large datasets, though consistency varies.

A software tool was developed with a user interface for the configuration of the

simulations, which include specifying the quantity of neurons and neuron layers,

establishing mutation probability percentages, and selection methods for genetic

variation to train the navigation and pathfinding capabilities of automated driving

systems. Three scenarios are also selectable from the user interface, providing the

option to experiment with trained automated driving systems in different environments

for adaptability testing.

Comprehensive analysis of the simulation data results from Pasadena, San

Diego, and Tampa scenarios revealed several significant patterns regarding the

evolutionary performance of the ADS agents across different parameters and selection

methods. Different genetic selection methods yield varying levels of success across

simulations. Tournament selection, while producing the highest individual fitness score

of 179 in PSim1, shows inconsistent performance across different scenarios. The Elitist

72

selection method, however, demonstrates more consistent high-performance outcomes,

particularly evident in the San Diego simulations where it produced multiple instances of

fitness scores above 140 (SDSim2, SDSim6, and SDSim7).

The neural network architectures, defined by the number of layers and neurons

per layer, appears to have a complex relationship with performance. The highest

performing simulations did not necessarily correlate with more complex neural network

architectures. For instance, TSim2, which achieved the highest overall fitness score of

269, utilized a relatively simple architecture of 2 layers with 3 neurons per layer. This

suggests that simpler neural network structures might be more effective for certain

scenarios, possibly due to better generalization capabilities.

Mutation parameters also play a crucial role in the evolutionary process. The

data indicates that moderate mutation possibilities (50-60%) combined with lower

mutation rates (2-3%) tend to produce better results across all three scenarios. This is

exemplified in TSim2 and several high-performing San Diego simulations, suggesting

that this balance allows for sufficient exploration of the solution space while maintaining

stable evolution.

The median fitness scores across all simulations, detailed in Appendix 4,

remained relatively low compared to their maximum fitness values, indicating significant

performance variation within individual populations. This suggests that while the

evolutionary process can produce highly capable individuals, maintaining consistent

performance across the entire population remains challenging.

73

Optimal performance in ADS evolution depends on a delicate balance of

parameters rather than extreme values in any single dimension. The results advocate

for simpler neural network architectures, moderate mutation rates, and selective

pressure that maintains diversity while promoting improvement. These findings could

inform future approaches to evolutionary algorithm design for autonomous vehicle

development and similar complex optimization problems in other domains.

In this work, some methodological aspects of gene selection and system

evolution through algorithms and some practical aspects related to their implementation

in neural networks and different simulation environments have been addressed. From

the methodological point of view, the results extend to the design of a genetic algorithm,

for its simplicity and low computational power requirements, and the design of a

feedforward artificial neural network, for its accuracy in predicting the state of the

system. Both bio-inspired models that have been used for the design of these

algorithms are well-known in the technical literature and are derived from organic

systems found in nature.

Future Research

While these neuroevolutionary approaches significantly advanced policies, the

simulations operated within simplified environments. Future plans include expanding the

simulation environment to capture more real-world complexities and dynamics that

include adding varied road types, traffic controls, weather effects, and pedestrian

agents. Simulating more of these intricate environments will help further validate and

enhance these evolved driving policies. Additional research aims include a focus on

74

efficiency and smoothness of control, exploring multi-objective optimization targets

beyond the scalar driving fitness metric used, and consideration of other vehicles to

promote safer, more well-rounded driving policies.

Expanding beyond feedforward neural network architectures to more complex

neural models like convolutional neural networks (CNN) and recurrent neural networks

(RNN) are also planned as these may better capture visual, sequential, and time-series

data patterns relevant for driving scenarios.

75

Bibliography

[1] National Highway Traffic Safety Administration, Automated Driving Systems: A
Vision for Safety. USGPO, 2017.

[2] U.S Department of Transportation, Preparing for The Future of Transportation:
Automated Vehicles 3.0. USGPO, 2018.

[3] J. M. Anderson, K. Nidhi, K. D. Stanley, P. Sorensen, C. Samaras, and O. A.

Oluwatola, Autonomous vehicle Technology: A Guide for Policymakers. Rand
Corporation, p. 29-30, 2014.

[4] S. Varun, T. Rohan, S. Abhishek and S. Rajan, 2020, “Self-Driving Car Simulation

Using Genetic Algorithm,” International Journal for Research in Applied Science &
Engineering Technology (IJRASET)., Vol. 8, No. 4, pp. 514-519.

[5] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2. ed. in Wiley-

Interscience. Hoboken, NJ: Wiley, p. 22, 179, 2004.

[6] R. E. Shannon, “Introduction to the art and science of simulation,” in 1998 Winter

Simulation Conference. Proceedings (Cat. No.98CH36274), Washington, DC, USA:
IEEE, 1998, pp. 7–14. doi: 10.1109/WSC.1998.744892.

[7] Y. Kubera, P. Mathieu, and S. Picault, “IODA: an interaction-oriented approach for

multi-agent based simulations,” Auton Agent Multi-Agent Syst, vol. 23, no. 3, pp.
303–343, Nov. 2011, doi: 10.1007/s10458-010-9164-z.

[8] L. Ma, Z. Ou, Y. Zhang, J. Luo and R. Tian, "Design of Decision Model of Intelligent

Distribution System of Telecom Logistics Based on Neural Network Optimization
Genetic Algorithm," 2023 2nd International Conference on Artificial Intelligence and
Autonomous Robot Systems (AIARS), Bristol, United Kingdom, 2023, pp. 214-218,
doi: 10.1109/AIARS59518.2023.00050.

[9] H. Ma, "Simulation of Logistics Route Optimization Model Based on Genetic

Algorithm Optimization Neural Network," 2023 2nd International Conference on
Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, United
Kingdom, 2023, pp. 105-109, doi: 10.1109/AIARS59518.2023.00028.

[10] X. Feng and Y. Zhu, "Trace AI Simulation of Feedforward Neural Network

Visualization Optimized by Genetic Algorithm Based on Unity3D," 2021 China
Automation Congress (CAC), Beijing, China, 2021, pp. 4934-4938, doi:
10.1109/CAC53003.2021.9727304.

[11] Y. Lu and R. Kuang, "A Driver Injury Prediction Model based on Genetic Algorithm

and BP Neural Network," 2023 7th International Conference on Transportation

76

Information and Safety (ICTIS), Xi'an, China, 2023, pp. 1984-1989, doi:
10.1109/ICTIS60134.2023.10243825.

[12] H. J. Kaleybar, M. Davoodi, M. Brenna and D. Zaninelli, "Applications of Genetic

Algorithm and Its Variants in Rail Vehicle Systems: A Bibliometric Analysis and
Comprehensive Review," in IEEE Access, vol. 11, pp. 68972-68993, 2023, doi:
10.1109/ACCESS.2023.3292790.

[13] D. Quang Tran and S.-H. Bae, “Proximal Policy Optimization Through a Deep

Reinforcement Learning Framework for Multiple Autonomous Vehicles at a Non-
Signalized Intersection,” Applied Sciences, vol. 10, no. 16, p. 5722, Aug. 2020, doi:
10.3390/app10165722.

[14] M. O. Radwan, A. A. H. Sedky, and K. M. Mahar, “Obstacles Avoidance of Self-

driving Vehicle using Deep Reinforcement Learning,” in 2021 31st International
Conference on Computer Theory and Applications (ICCTA), Alexandria, Egypt:
IEEE, Dec. 2021, pp. 215–222. doi: 10.1109/ICCTA54562.2021.9916640.

[15] J. Cui, L. Yuan, L. He, W. Xiao, T. Ran, and J. Zhang, “Multi-Input Autonomous

Driving Based on Deep Reinforcement Learning With Double Bias Experience
Replay,” IEEE Sensors J., vol. 23, no. 11, pp. 11253–11261, Jun. 2023, doi:
10.1109/JSEN.2023.3237206.

[16] R. Rauch, S. Korecko, and J. Gazda, “Evaluation of Proximal Policy Optimization

with Extensions in Virtual Environments of Various Complexity,” in 2022 32nd
International Conference Radioelektronika (RADIOELEKTRONIKA), Kosice,
Slovakia: IEEE, Apr. 2022, pp. 1–5. doi:
10.1109/RADIOELEKTRONIKA54537.2022.9764924.

[17] Y. Saez, D. Perez, O. Sanjuan, and P. Isasi, “Driving Cars by Means of Genetic

Algorithms,” in Parallel Problem Solving from Nature – PPSN X, vol. 5199, G.
Rudolph, T. Jansen, N. Beume, S. Lucas, and C. Poloni, Eds., in Lecture Notes in
Computer Science, vol. 5199. , Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 1101–1110.

[18] S. Arrigoni, F. Braghin, and F. Cheli, “MPC path-planner for autonomous driving

solved by genetic algorithm technique,” Vehicle System Dynamics, vol. 60, no. 12,
pp. 4118–4143, Dec. 2022.

[19] A. M. Naveen, R. Ravish, and S. Ranga Swamy, “Distributional Reinforcement

Learning For Automated Driving Vehicle,” in 2022 IEEE 2nd Mysore Sub Section
International Conference (MysuruCon), Mysuru, India: IEEE, Oct. 2022, pp. 1–6.

[20] R. R. O. Al-Nima, T. Han, S. a. M. Al-Sumaidaee, T. Chen, and W. L. Woo,

“Robustness and performance of Deep Reinforcement Learning,” Applied Soft
Computing, vol. 105, p. 107295, Jul. 2021

77

[21] C. M. Samuel, “Self-Driving Cars using Genetic Algorithm,” IJRASET, vol. 8, no. 11,

pp. 508–511, Nov. 2020.

[22] S. G, V. S, S. S, and G. Suganya, “Application of Neuroevolution in Autonomous

Cars.” arXiv, Jun. 26, 2020. Accessed: Nov. 17, 2023. [Online]. Available:
http://arxiv.org/abs/2006.15175

[23] A. J. M. Muzahid, S. F. Kamarulzaman, and M. A. Rahman, “Comparison of PPO

and SAC Algorithms Towards Decision Making Strategies for Collision Avoidance
Among Multiple Autonomous Vehicles,” in 2021 International Conference on
Software Engineering & Computer Systems and 4th International Conference on
Computational Science and Information Management (ICSECS-ICOCSIM), Pekan,
Malaysia: IEEE, Aug. 2021, pp. 200–205. doi: 10.1109/ICSECS52883.2021.00043.

[24] Unity – Manual: Introduction to scenes, Unity Technologies, San Francisco, CA,

https://docs.unity3d.com/Manual/CreatingScenes.html (accessed December 1,
2023).

[25] Unity – Manual: Introduction to GameObjects, Unity Technologies, San Francisco,

CA, https://docs.unity3d.com/Manual/GameObjects.html (accessed December 1,
2023).

[26] Unity – Manual: Scripting, Unity Technologies, San Francisco, CA,

https://docs.unity3d.com/Manual/ScriptingSection.html (accessed December 1,
2023).

[27] OpenStreetMap Wiki contributors, "Beginners Guide 1.3," OpenStreetMap

Wiki, https://wiki.openstreetmap.org/w/index.php?title=Beginners_Guide_1.3&oldid
=2582746 (accessed December 16, 2023).

[28] OpenStreetMap Wiki contributors, "OpenStreetMap Carto," OpenStreetMap

Wiki, https://wiki.openstreetmap.org/w/index.php?title=OpenStreetMap_Carto&oldid
=2622328 (accessed December 16, 2023).

[29] OpenStreetMap Wiki contributors, "CyclOSM," OpenStreetMap

Wiki, https://wiki.openstreetmap.org/w/index.php?title=CyclOSM&oldid=2569286 (a
ccessed December 16, 2023).

[30] OpenStreetMap Wiki contributors, "Transport Map," OpenStreetMap

Wiki, https://wiki.openstreetmap.org/w/index.php?title=Transport_Map&oldid=23287
82 (accessed December 16, 2023).

[31] OpenStreetMap Wiki contributors, "ÖPNVKarte," OpenStreetMap

Wiki, https://wiki.openstreetmap.org/w/index.php?title=%C3%96PNVKarte&oldid=26
13206 (accessed December 16, 2023).

78

[32] OpenStreetMap Wiki contributors, "HOT style," OpenStreetMap

Wiki , https://wiki.openstreetmap.org/w/index.php?title=HOT_style&oldid=2437938 (
accessed December 16, 2023).

[33] OSMF Operations Working Group, “Criteria for possible inclusion - A proposed tile

layer must satisfy the following hard criteria:,” New Tile Layers Policy,
https://operations.osmfoundation.org/policies/new-tile-layers/ (accessed December
16, 2023).

[34] M. Mitchell, 1998. An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT

Press, 1998.

[35] OpenStreetMap Wiki contributors, "Overpass API," OpenStreetMap

Wiki, https://wiki.openstreetmap.org/w/index.php?title=Overpass_API&oldid=26248
41 (accessed December 16, 2023).

[36] Global Roads & Traffic-User Manual, Virtual Road, Edinburgh, UK, Accessed:

December 16, 2023. [Online]. Available:
https://vroad.uk/doc/installation/GlobalRoadsAndTraffic_Manual.pdf

79

Appendix 1: Select UML Class Diagrams

1-1. Neural Network Class

80

1-2. Genetic Algorithm Class

81

1-3. Simulation Manager Class

82

Appendix 2: 3D Modeling and Physics

2-1. Box Collider

The Box Collider acts as the main collider for detecting collisions of the overall

agent car object. It is added as a component to the car GameObject and sized to match

the car's body as shown in Figure 2-1.

Figure 2-1. Box Collider applied to the agent car body

83

2-2. Wheel Collider

The Wheel Collider component specifically handles the physics and motion of the

wheels. Four Wheel Collider components are added as children of the car GameObject,

positioned to match the actual wheel transforms as shown in Figure 2-2.

Figure 2-2. Wheel Colliders applied to the agent car tires

The Wheel Colliders simulate real wheel physics. The CarController script

accesses them to apply motor/brake torques and steering angles. Wheel Colliders are

invisible - the visible 3D wheel models as children are positioned to match the colliders

via the UpdateMeshes() method.

Key Wheel Collider properties as seen in Figure 2-3 are:

• Mass - The wheel's mass affects physics

84

• Radius/Width - Dimensions matching the wheel model

• Suspension Distance - How much the wheel can compress

• Spring/Damper - Suspension responsiveness

• Steer Angle - Maximum turn of the steering wheel

• Motor Torque - Torque applied to accelerate the wheel

• Brake Torque - Torque applied to slow the wheel

• Friction Curve - Lateral and longitudinal friction

This setup with a Box Collider for the car body and Wheel Colliders for the wheels

provides realistic physics, tire friction, suspension, and controllable

steering/acceleration.

Figure 2-3. Physics settings for the Wheel Collider in Inspector panel

85

Appendix 3: Neural Network and Genetic Selection

3-1. Neural Network FixedUpdate() Method

The FixedUpdate() method runs each frame to utilize the neural network to

control the agent car. First, it gets the latest array of input sensor data for this car from

the Manager. Then, a switch statement, shown in Figure 3-1, handles propagating the

data through the neural network based on the number of hidden layers. For zero hidden

layers, the output layer calculates directly from the inputs. For one hidden layer, the first

hidden layer calculates outputs from the inputs which are fed into the output layer. For

two or more hidden layers, the data flows sequentially from input, through each hidden

layer, with the output from one layer becoming inputs to the next, until finally reaching

the output layer.

The resulting output layer activations are stored in m_Control, with the first value

controlling steering and the second acceleration. Finally, these neural network output

control values are applied to the CarController to physically steer and accelerate the car

every frame in the simulation.

86

Figure 3-1. FixedUpdate() method of the NeuralNetwork class

87

3-2. Tournament C# Class

In the GeneticAlgorithmTournament class, the tournament size is defined by the

SelectionPressure parameter shown in Figure 3-2. In each tournament, individuals

compete and the one with the highest fitness gets selected as a parent, the rest are

eliminated. This repeats, forming parent pairs for crossover. By default, one parent of

each pair is randomly chosen. The second goes through the tournament process.

Tournaments continue until all the breeding pairs for the next generation are filled.

Multiple tournaments are held across the population.

The methods implement the tournament logic through random sampling without

replacement, fitness-based sorting within groups, and pairing winners over iterations.

The advantage of tournament selection is that fitter individuals have a higher chance of

being selected across multiple simulation runs, but selection is still stochastic, so

genetic diversity is maintained. The smaller the tournaments, the higher the selection

pressure rewarding top fitness.

88

Figure 3-2. Tournament genetic selection method

89

3-3. Elitist C# Class

GeneticAlgorithmTopHalf class selects parents from the Elitist fittest individuals

of the population. As shown in Figure 3-3, it first determines which are the top half

neural networks by sorting the FitnessRecords, then IDs of these top performers are

stored. Then for every breeding pair, it randomly samples two parents from this top half

set, ensuring they are distinct. If the same ID is picked twice, re-sampling occurs.

Crossover only happens between the elite of that generation. By restricting the gene

pool to above average candidates, it focuses evolution on propagating beneficial

genetics of neural networks already partially optimized. However, since pairing is still

random, it maintains enough diversity for continued improvement across generations.

Figure 3-3. Elitist genetic selection method

90

3-4. Tournament + 20% Random C# Class

GeneticAlgorithmWorstRandom class combines tournament selection with

random resetting of the worst neural networks each generation. It runs tournaments -

while loops in Figure 3-4 - to pick good parents for crossover. This ensures above

average candidates pass on genetics. Additionally, the bottom 20% lowest performing

neural networks have their weights randomly reinitialized instead of undergoing

recombination. This introduces new genetic diversity and the possibility of better

configurations, avoiding stagnation. Over successive generations, the threshold dividing

fit and unfit neural networks rises, so more get reset as the average fitness increases

from those benefiting from crossover.

91

Figure 3-4. Tournament + Random 20% genetic selection method

92

3-5. Roulette Wheel C# Class

GeneticAlgorithmRouletteWheel class randomly picks two numbers between 0

and 1 to select parents. The numbers fall into segments which map to a specific neural

network's arc. Start(), initializes the CarNetworks array in Figure 3-5 to hold the neural

networks and creates a 2D array CarPairs to store the breeding pairs. It then allocates a

FitnessRecord array to contain fitness data and allocates the WheelItem array with size

equal to population, to store information for roulette wheel segments.

Figure 3-5. Roulette wheel genetic selection method

93

The Selection() method normalizes the fitness scores into a proportional range

as shown in Figure 3-6, so that if a neural network has a fitness twice that of another, its

range also doubles. These form segments of a wheel with higher fitness scores

equating to larger arcs on the wheel. Spinning a random number across generations

allows periodic selection of even, low fitness neural networks to maintain diversity. Over

successive generations, as fitness increases, the wheel gets divided into a finer

resolution, and subsequently, fitness differentials between candidates become more

pronounced. Tradeoffs are done to optimize genetic propagation across generations.

Figure 3-6. Selection() method for fitness

94

Appendix 4: Aggregate Analysis of All Three Scenario
Simulation Results

4-1. Correlation Analysis

Figure 4-1. Correlation analysis of all three scenarios

4-2. Regression Analysis

Figure 4-2. Max Fitness vs Neuron Layers regression analysis

95

Figure 4-3. Max Fitness vs Neurons per Layer regression analysis

Figure 4-4. Max Fitness vs Mutation Possibility regression analysis

Figure 4-5. Max Fitness vs Neurons per Layer regression analysis (quadratic)

