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Abstract 

As vehicular automation progresses, designing and validating reliable yet 

proficient automated driving systems (ADS) remains a challenging imperative, as the 

current state relies on live driving scenarios and datasets. This research centers on 

advancing ADS capabilities by proposing a simulation framework and software tool for 

machine learning consisting of a genetic algorithm (GA) with selection methods and 

artificial neural network (ANN) architectures all configurable via a user interface (UI), 

which guides the training and optimization of ANNs, allowing ADS policies to learn and 

evolve rather than relying on existing datasets.  

The Unity game engine provides the development environment for crafting the UI 

to configure driving agents, and for selecting from three different 3D simulation scenario 

environments of Pasadena, San Diego, and Tampa that are constructed from 

OpenStreetMap data. The research experiments aim to enhance ADS performance 

through simulation-based evaluation which aligns with the Intelligent Transportation 

Systems Joint Program Office (ITS JPO) technical activities, and the National Highway 

Traffic Safety Administration (NHTSA) vision for safety to accelerate the safe integration 

of autonomous vehicles into the transportation system.  

Simulation experiments using different GA and ANN configurations were 

conducted in each of the 3D scenario environments. Analysis of the simulation results 

revealed several significant patterns of evolutionary performance of ADS agents across 

different parameter configurations, yielding varying levels of optimization success 

across generations in the simulations. 
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Chapter 1 – Introduction 
 

Today’s transportation technology is marking an autonomous future for society. 

The U.S. Department of Transportation has a role to play in building and shaping this 

future by developing a regulatory framework that encourages, rather than hampers, the 

safe development, testing and deployment of automated vehicle technology [1]. The 

National Highway Traffic Safety Administration (NHTSA) released A Vision for Safety, a 

set of guidelines to promote improvements in the safety of Automated Driving Systems 

(ADS). This voluntary guidance serves to assist designers of ADS technology to 

analyze, identify, and resolve safety considerations prior to deployment using their own, 

industry, and other best practices. Organizations are advised to use a comprehensive 

systems engineering methodology to design and validate ADSs, with the primary 

objective of ensuring they don't pose unacceptable safety hazards [1]. 

When evaluating the readiness of an ADS for public road use, organizations can 

employ multiple testing methods, including virtual simulations, closed-course testing 

facilities, and real-world road evaluations [1]. Aligned with this guidance, the research 

presented here takes the virtual simulation approach to validation, as it can guide 

organizations in evaluating how much simulation might be needed before conducting 

tests on public roads [1]. 

Automation and Safety 

Automated Driving Systems utilize advanced sensor arrays and adaptive 

machine learning software algorithms that provide a holistic perception of environmental 
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surroundings enabling robust operation under diverse lighting, weather, and driving 

scenarios [2]. These systems demonstrate dynamic adaptation to novel situations 

through iterative software updates, which integrate insights derived from aggregated 

operational data and prior experiential learning. The Society of Automotive Engineers 

(SAE) classification system, shown in Figure 1, provides value in contextualizing the 

current and potential future state of automation in driving systems like those modeled 

and simulated in this experiment. Benchmarking against these standardized levels 

enables envisioning the evolutionary trajectory and objectives for these systems over 

time, charting progress in pursuit of the ultimate goal for human-like automated driving.  

 

Figure 1. ADS levels in SAE J3016 (SAE, 2016). Reprinted from Automated Driving Systems: A Vision for Safety 
(NHTSA, 2017, p. 4) 

 

Though autonomous vehicles demonstrate considerable latent capacity to 

augment productivity, mitigate collisions, traffic congestion, and reduce pollution, 

government oversight is vital in managing and ensuring the smooth incorporation of 

automated vehicles within the existing transportation infrastructure that will guarantee 
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compatibility with conventional vehicles and a wide range of road users [2], such as 

pedestrians, bicyclists, and motorcyclists. With such diversity of stakeholders and the 

expansive ecosystem of entities advancing ADS technologies, establishing a 

generalized conceptual framework is essential to elucidate the distinctions between 

developmental testing and full-scale deployment for public understanding. The 

framework in Figure 2 can serve to facilitate structured discourse on strategies to 

enhance safety protocols, mitigate risks, and maximize societal benefits arising from the 

integration of ADS innovations [2].  

Overarchingly, contemporary determinations concerning if and how to sanction 

autonomous vehicle technologies will substantially impact their influence in transforming 

transportation ecosystems [3]. The nature and extent of the prospective utilities afforded 

by autonomous vehicle technologies will be contingent on the degree of automation 

attained. To exemplify, select safety enhancements conferred by automated 

functionalities such as automatic braking may be secured at modest levels of 

automation, whereas the putative land use and environmental payoffs likely necessitate 

more comprehensive automation reaching Level 4 status [3].  

Studies have highlighted significant barriers to realizing fully self-driving Level 5 

vehicles, including obtaining adequate on-road data capturing both optimal and 

imperfect driving conduct from humans [4]. To enable autonomous vehicles to 

independently handle end-to-end journey situations, driving datasets need to 

incorporate substantial quantities of real-world edge cases beyond ideal conditions so 

that automated skill can approach human adaptiveness and judgment. Hence procuring 



4 

 

ample heterogeneous data remains pivotal for advancing and validating versatile 

autonomous capabilities.  

 

Figure 2. Safety Risk Management. From Preparing for The Future of Transportation: Automated Vehicles 3.0. 

(USGPO, 2018, p. 36) 

 

Applying varied advanced algorithms through extensive research and 

development to enhance ADS technology remains necessary to further their evolution. 

Iteratively approaching the challenge from multiple angles can lead to enhanced 

capabilities, overcoming current limitations. Advancing the field will enable minimizing 

the risks of accidents, delivering a significant public impact from increased adoption of 

reliable automated driving systems.  

This research centers on advancing the state-of-the-art by applying such 

algorithms for machine learning in the development of an application for simulating 
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automated driving systems at Level 4 and 5 automation by implementing a genetic 

algorithm, to train and optimize artificial neural networks without the dependence of 

existing driving datasets.  

Bio-Inspired Artificial Systems 

Genetic Algorithms 

The precepts underpinning genetics and natural selection constitute the 

conceptual basis for a computational optimization and exploration method termed the 

genetic algorithm (GA), formulated by pioneering computer scientist John Holland 

through research conducted during the 1960s and 1970s [5]. This biological inspiration 

facilitates an adaptive search process wherein an initialized random assortment of 

solution candidates evolves over successive iterations guided by specified selection 

pressures toward maximal optimization of a fitness metric, analogous to the principle of 

natural selection, thereby effectively minimizing an objective cost function [5].  

Genetic algorithms mimic the process of natural selection to find optimized 

solutions to complex problems that conventional mathematical optimization cannot 

handle. In particular, genetic algorithms use random mutation, crossover of solution 

components, and survival of the superior solutions to evolve generations of candidate 

solutions tailored to a target problem. Through this evolutionary technique, genetic 

algorithms provide an adaptive methodology to find very good, if not optimal, solutions. 

Moreover, genetic algorithms have proven ability to optimize solutions for complicated 

problems. An expanding trend connects this optimization capability with supplementary 

artificial intelligence methods like neural networks [5], which offer distinct benefits.  
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Combining the adaptive optimization of genetic algorithms with the pattern 

detection and predictive modeling of artificial neural networks creates a hybrid system 

that utilizes the strengths of both approaches for enhanced handling of intricacy and 

discovery of superior solutions. These genetic algorithms signify a unique strategy, 

especially when integrated with complementary machine learning procedures, for 

addressing multifarious problems intractable to traditional analytical approaches. 

Artificial Neural Networks 

Artificial Neural Networks (ANN) are computational frameworks designed to 

approximate unknown numerical values through the systematic derivation of patterns 

from observed data points, achieved by architecturally emulating the information 

processing mechanisms inherent in biological neural systems [5]. In this biomimetic 

paradigm, the biological neuron represents a processing unit acquiring numerous input 

signals. These incoming signals are subject to adjustable modulation by synaptic 

weights prior to aggregation. In essence, artificial neural networks seek to achieve 

versatile function approximation by simulating the multi-input integrative behaviors of 

organic neurons using tunable weighted connections. This neurobiological inspiration 

enables neural networks to conduct nonlinear statistical data modeling for tasks like 

machine learning classification, prediction and pattern recognition through exposure to 

representative training data. By leveraging organizational principles from neuroscience, 

artificial neural networks can extrapolate outputs for novel inputs after learning 

correlations from samples. 
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This hybrid framework aims to leverage the optimization power of genetic 

algorithms with the information processing strengths of artificial neural networks. The 

integrated framework of an artificial neural network guided by the genetic algorithm 

thereby seeks to capitalize on the unique merits of each method in order to engender 

solutions surpassing those from the individual techniques alone.  

Systems Simulation  

Simulation involves constructing a representative prototype of an actual system 

with which to perform exploratory experiments, enabling insight and comprehension of 

how the system functions, and assessment of diverse operational tactics for managing 

that system [6]. The simulation process allows for learning how a real-world system 

behaves and for optimizing approaches to its operation. The model is the core concept 

underlying simulations, encapsulating the key components, behaviors, and interactions 

that enable replicating how the actual system functions. The structure and logic 

captured in the simulation model give it the ability to imitate system functioning [7]. 

Models of genetic and neural machine learning processes have been created for this 

thesis research for conducting computational experiments through a simulation 

framework and software tool.  

Thesis Motivation 

A sustained intellectual curiosity in natural and biological systems, and their 

biomimetic potential for engineering innovation has informed both my professional 

trajectory and research aspirations. Previous participation in biomimicry organizations, 

coupled with professional experience in human-centered interface design for software 
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systems, has equipped me to address the challenges of developing simulation tools that 

enable researchers to explore biological systems within an engineering context. 

This technical foundation, complemented by my Unity Certified Associate Game 

Developer certification, has crystallized my objective to synthesize these disciplines to 

advance the adaptability of simulation frameworks and accessibility of software tools, 

particularly those integrating biologically inspired computational models. 

All the simulation experiments were conducted using a Dell Precision 7810 

workstation with dual Xeon 3.0GHz CPUs, 128GB of system RAM, and Nvidia GeForce 

RTX 2080 GPU with 8GB of VRAM. Unity Engine/Editor and C# programming language 

were the software tools used to develop the simulator application. 

This research objective is to evaluate the performance of genetic algorithms in 

optimizing artificial neural networks for automated driving systems in multiple 

environments with increasing complexity. Implemented in Unity Engine, the scenario 

environments are presented as 3D mesh models of U.S. cities using OpenStreetMap, 

and the genetic algorithm and artificial neural network is applied to a controller of an 

autonomous vehicle agent. The rest of the thesis is organized as follows: Chapter 2 

introduces the methodology and experimental design used, Chapter 3 covers key 

aspects of the system architecture and design, Chapter 4 deals with implementation of 

the simulation environment, agent car models, genetic algorithms and artificial neural 

network, and in Chapter 5, the experimental simulation is carried out and the results of 

the experiments are analyzed. The thesis concludes in Chapter 6 with a summary of 

achieved results and plans for future development. 
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Chapter 2 – Methodology 
 

Literature Review of Related Research 
 

Several research activities using Unity Engine-based simulation, autonomous 

agents, genetic algorithms and artificial neural network optimization techniques exist in 

the technical literature that served as reference sources in informing aspects of this 

research and the experiments conducted. 

Genetic Algorithms and Neural Networks 

Ma, et al [8] uses neural networks optimized by genetic algorithms for logistics 

demand forecasting. Fundamentally, the study argues that this hybrid approach can 

improve forecasting accuracy to support intelligent logistics distribution systems. The 

authors summarize a proposed model combining neural networks and genetic 

algorithms for freight vehicle routing in complex urban settings. The primary point 

emphasized is that genetic algorithms help optimize neural network weights for higher 

precision forecasts. Testing results demonstrating over 96% accuracy are presented to 

validate the methodology's feasibility for logistics planning and optimization tasks.  

The research work of H. Ma [9] explored optimizing logistics distribution routes 

using a hybrid genetic and neural network approach. The core proposition of the work 

asserts that combining neural networks for processing data with genetic algorithms for 

optimization provides effective route selection exceeding traditional methods. The 

researcher summarizes a proposed model using neural networks to establish an 

evaluation matrix for ranking route options based on cost, capacity, and traffic. Genetic 
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algorithms then operate on this matrix to identify optimal routes. This approach avoids 

limitations of conventional algorithms and testing validates lower complexity, faster 

convergence, and higher computational efficiency compared to baseline methods.  

Feng and Zhu [10] research of using genetic algorithms to train neural networks 

for self-driving car vision and navigation is of most relevance to this experiment. Feng 

and Zhu’s central thesis is that genetic algorithms can replace traditional feedback 

regulation in neural network training, enabling sample-efficient learning for tracking 

tasks. The researchers summarize an approach using genetic algorithms to evolve 

feedforward neural network weights over generations for visual tracking in a Unity 

simulation. The significance of the research is that this method does not require large 

datasets, and testing shows the trained network can guide an autonomous vehicle to 

avoid obstacles and reach targets. Though directly related to the research in this 

experiment, Feng and Zhu do not specify the ability to explore different configurations to 

identify the most optimal performing solutions. 

In the work of Lu and Kuang, an injury prediction model to enhance automatic 

crash notification systems for faster emergency response was developed [11], which 

combined genetic algorithms and neural networks to improve prediction accuracy over 

other methods. The authors summarize an approach using National Highway Traffic 

Safety Administration data to train a genetic algorithm-optimized neural network model 

to categorize driver injuries from crashes. Analyzing correlations and using a hybrid GA-

NN method appear to increase reliability and outperform SVM, LSTM, standard NN, and 

logistic regression models. Testing results demonstrating higher accuracy are presented 
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to validate the methodology's ability to optimize emergency medical dispatch through 

injured driver classification.  

The main theme of [12] is reviewing and analyzing the use of genetic algorithms 

for railway system optimization. At the heart of the argument lies the claim that GAs 

have emerged as a popular technique for addressing the complex, multi-objective 

problems inherent in railway operations and design. The researchers reviewed highly 

cited and recent studies applying GAs and hybrid GA approaches to diverse railway 

challenges including scheduling, routing, forecasting, design, maintenance, and 

allocation. Their views are that GAs can effectively handle the nonlinear, time-varying 

nature of railway systems, and that hybridizing GAs with methods like particle swarm 

optimization, ant colony optimization, and neural networks enhances capabilities. A 

comprehensive bibliometric analysis of over 250 publications was presented to provide 

a roadmap identifying opportunities and research gaps in using evolutionary algorithms 

for railway optimization.  

Unity Engine-based Simulations  

In Proximal Policy Optimization Through a Deep Reinforcement Learning 

Framework for Multiple Autonomous Vehicles at a Non-Signalized Intersection, D. 

Quang et al uses advanced deep reinforcement learning to develop autonomous vehicle 

control models for improving traffic flow efficiency in mixed-autonomy environments 

[13]. They argue that leading autonomous vehicles, even at low penetration rates, can 

help optimize mobility by reducing delays and improving average speeds at 

intersections lacking traffic signals. Their research involved developing and testing a 
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proximal policy optimization reinforcement learning model to validate the benefits of 

autonomous vehicles for non-signalized intersection control. Using the SUMO tool the 

researchers demonstrated an approach that enables the reliable simulation of mixed-

autonomy scenarios, and that the results demonstrate clear traffic improvements from 

integrating just a small percentage of autonomous vehicles.  

Radwan, Sedky and Mahar research work uses reinforcement learning to train 

autonomous vehicles in simulated environments as an alternative to risky real-world 

data collection [14]. The foundational claim posits that Unity's ML-Agents toolkit enables 

evaluating different reinforcement learning algorithms for obstacle avoidance in self-

driving cars. Their approach finds the optimal algorithm by testing proximal policy 

optimization (PPO) and soft actor-critic (SAC) on virtual driving scenarios using single 

and multi-agent training as well as camera and LiDAR sensors. They show that 

simulation training mitigates risks and labeling efforts compared to real-world data, and 

that the results demonstrate PPO and LiDAR outperform SAC and cameras in the 

experiments. 

Improving the safety and efficiency of deep reinforcement learning for 

autonomous driving [15] is the central theme in the research of Cui et al. The central 

thesis is that a double-bias experience replay approach allows agents to choose their 

own driving learning tendency, enabling faster speeds while maintaining stability. This is 

demonstrated by proposing a new loss function and applying double-bias experience 

replay to DQN, DD-DQN, and QR-DQN algorithms thereby allowing agents to bias 

experience sampling from safe or risky driving improves performance over single 
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experience replay. Testing on a Unity-based simulator demonstrates the proposed 

approach enables agents to achieve higher rewards, increased speed, fewer lane 

changes, and more stability during training.  

The research done in Evaluation of Proximal Policy Optimization with Extensions 

in Virtual Environments of Various Complexity focused on evaluating proximal policy 

optimization (PPO) reinforcement learning for control in a racing game scenario [16]. 

This combined PPO with imitation learning and curiosity-driven exploration to improve 

performance in completing racing circuits. Experiments were carried out in a custom 

Unity racing game using PPO alone and with extensions. The researchers found that 

hyperparameters tuning, learning curves, and inference metrics demonstrate PPO with 

imitation learning and curiosity modules surpasses base PPO in driving the agent. 

Saez et al also present research of direct relevance in using genetic algorithms 

for automatic vehicle control, specifically focused on optimizing lap times in racing 

scenarios [17]. Their view is that evolutionary computation techniques like genetic 

algorithms can enable automated vehicle guidance and improve performance in 

domains like racing where aerodynamics, fuel efficiency, and power output are critical. 

This is shown by applying genetic algorithms to learn optimal driving policies that 

minimize lap times across different circuits. Central to the research are the claims that 

automated driving is an important capability with applications ranging from commercial 

safety to racing optimization, and that genetic algorithms present a promising approach 

for vehicle guidance learning in racing contexts where lap time is the primary objective.  
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Arrigoni et al presented work in real-time trajectory planning for autonomous 

vehicles using nonlinear model predictive control optimized by a genetic algorithm [18]. 

The primary assertion underpinning the analysis is that this approach enables effective 

obstacle avoidance and handling under various friction conditions with real-time 

performance. The author succinctly captures an NMPC implementation using a 

nonlinear single-track vehicle model and Pacejka tire formulas, with the NMPC problem 

solved through a proposed genetic algorithm strategy. The main assertions put forward 

are that simulations demonstrate robust performance under challenging conditions, and 

computational analysis proves real-time feasibility. 

Naveen et al explored developing an automated driving assistance system for 

highways using deep reinforcement learning [19]. The overarching premise advanced is 

that deep RL can enable driver assistance features like cruise control and automatic 

braking to be extended for more complete vehicle autonomy in limited highway 

scenarios. The text summarizes a proposed approach where a machine learning agent 

leverages camera images and LiDAR data to make driving decisions through deep 

reinforcement learning algorithms. Among the core argument outlined is that this 

provides understanding of the surroundings to automate acceleration, braking, and lane 

changing while avoiding collisions. Testing in a simulated highway environment is 

presented to validate the methodology's ability to learn policies that deliver automated 

highway driving assistance.  

Optimizing robustness and performance of deep reinforcement learning networks 

using genetic algorithms and neuron coverage [20] is featured in the research of Al-



15 

 

Nima et al. Central to the author’s position is the idea that a proposed Genetic Algorithm 

of Neuron Coverage (GANC) approach can optimize neuron coverage of DRL networks 

by generating augmented training inputs. In brief, the work recaps an application of 

GANC to self-driving car decision making, where reliability across diverse road views is 

critical. Testing on a driving dataset demonstrates maximized neuron coverage via the 

genetic algorithm produces superior driving accuracy over previous state-of-the-art 

results. The pivotal point articulated focus on the use of GANC which leverages genetic 

algorithms to increase neural coverage and augment training data, yielding more robust 

DRL policies.  

Training autonomous vehicles to navigate environments using neural networks 

optimized by evolutionary algorithms was explored in the work by Samuel [21]. The 

driving hypothesis of the text suggests that neural networks can steer cars based on 

evolved weights from genetic algorithms. The analysis distills the essence of a 2D Unity 

simulation where cars learn driving policies by genetically evolving neural networks over 

generations. The principal idea presented revolve around standard feedforward neural 

networks being trained through genetic algorithms to control steering, and that this 

evolutionary approach enables cars to incrementally improve navigation skills. Testing 

in simplified environments with just lanes and static obstacles is presented to 

demonstrate the feasibility of the proposed technique. In essence, the text proposes 

and validates using genetic algorithms to optimize neural network weights for 

autonomous vehicle control, incrementally evolving driving proficiency over generations 

in a simulated environment.  
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Application of Neuroevolution in Autonomous Cars explores training autonomous 

electric vehicles through neuroevolution in simulated environments as an alternative to 

large real-world datasets [22]. This highly relevant research maintains that genetic 

algorithms like neuroevolution enable incremental optimization towards driving 

proficiency without reliance on massive data. The research consolidates key points 

about an approach using neuroevolution, a form of genetic algorithm, to evolve self-

driving policies in a physics-based Unreal Engine simulation. Key takeaways from the 

analysis suggest that this evolutionary technique exploits serendipitous discoveries to 

develop driving skills from scratch, provides generalizable capabilities transferable to 

real-world applications, and offers a foundation for integrating other machine learning 

methods. Testing in the simulated environment is presented to demonstrate the 

feasibility of bootstrapping end-to-end autonomous driving through neuroevolution.  

Muzahid et al employed reinforcement learning techniques like proximal policy 

optimization (PPO) and soft actor-critic (SAC) to enable autonomous vehicles to safely 

change lanes and avoid multiple vehicle collisions [23]. The work’s principal contention 

revolves around both PPO and SAC successfully learning optimal driving policies for 

collision avoidance in simulated environments, with SAC demonstrating greater data 

efficiency but PPO providing more stable training. The discussion provides a condensed 

overview of an approach where agents are trained using Unity and ML-Agents to 

incrementally develop behaviors that allow smooth lane changing through sensing 

proximity of surrounding vehicles and adjusting speed accordingly. The foundational 

arguments advanced center on the 91-96% success rate of the trained agents in 

avoiding collisions which demonstrates that reinforcement learning enables agents to 
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acquire robust driving policies for critical autonomous vehicle functions like lane 

merging.  

Research Hypotheses 

In all of the previous research, there is a lack of UI tools for configuring different 

genetic selection methods and neural network architectures to explore simulation 

scenarios. It is here where this research contributes to advancing the simulation domain 

and autonomous systems research. To assess the safety of ADS technology in 

alignment with NHSTA objectives, this software tool will allow for testing the following 

hypotheses: 

• Increasing the number of neurons and neuron layers leads to higher 

maximum navigational fitness for the cars. 

• Higher mutation rates result in more exploration of the search space but 

lower average population fitness over generations. 

• Using certain selection methods maintains higher genetic diversity 

compared to other selection methods.   

Furthermore, the dataset-independence of the experiment has the advantage of 

also exploring scenarios not contained in existing datasets, thereby being able to adapt 

and learn from the environment. Such an approach regardless of positive or negative 

results will allow for the evaluation of virtual simulations prior to on-road testing. 
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Design Approach 

Executing illuminating simulation-based systems research necessitates following 

a rigorous experimental research protocol encompassing model construction, simulation 

execution, and results analysis activities to reliably evaluate theoretical system behavior 

predictions. Virtual experiments using computer simulations to study natural or artificial 

system phenomena require clearly defining the simulation and modeling methodology to 

facilitate constructing an appropriate conceptual system representation. Running the 

simulation model experiment then produces informative results if the simulation process 

accurately captures the dominant components and interactions of real-world systems.  

This research applies an experimental design approach illustrated in Figure 3 

that will allow for evaluations of simulation scenarios to better understand the factors 

that influence a particular ADS configuration for safe drivability. The user interface (UI) 

of the simulator tool will enable researchers to identify and configure factors that impact 

simulation experiments. Following a systematic approach, the process begins with a 

screening design that incorporates key configurations likely to influence outcomes. By 

isolating the most critical factors, the system then transitions to an optimized 

experimental design phase for further refinement. 
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Figure 3. Experimental design process 

The main objectives of this experimental research are as follows: 

• Developing a genetic algorithm and neural network architecture for machine 

learning to enhance policy optimization of automated driving systems without 

dependence on large datasets.   

• Creating a user interface (UI) for exploring different genetic selection methods 

and neural network architecture configurations. 

• Investigating iterative improvement of autonomous vehicle controllers across 

generations via bio-inspired evolutionary algorithms for adaptive policy search in 

the machine learning training simulations. 
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Control variables are: 

• Genetic Selection Methods. 

• Neurons and Neuron Layers. 

• Mutation Possibility and Rate. 

Figure 4 illustrates the general flow of the simulation software tool. Accessible 

from the start screen is the configuration settings UI with options to adjust several 

parameters of the simulation. 

  

Figure 4. Workflow of the simulation tool 

 

Simulation Framework 

Unity Engine forms the core technology of the framework depicted in Figure 5 

from which this simulation tool is built. In Unity, Scenes are asset bundles that 

compositionally aggregate GameObjects [24]. GameObjects are the fundamental 
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elements which encapsulate graphical and functional components [25], and through 

Scripts, GameObjects can respond to user input, drive physics simulations, render 

graphical effects, and implement custom character behavior [26]. Together, they provide 

the working canvas for game and application content by orchestrating collections of 

modular GameObjects to construct interactive environments using scripting logic. 

Specifically, the interplay between configurable GameObject components, Scene 

aggregation, and cross-cutting scripts constitutes the core mechanism for developing 

Unity gameplay and interactive simulations by linking interface appearance and 

underlying behavior across objects to enable manipulating environments, triggering 

events, producing graphics, and defining machine learning agents.  

 

Figure 5. Development flow of assets in Unity Engine  

Once the plans and designs are implemented in Unity, simulation experiments of 

various scenarios can be carried out and results analyzed.  
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Geo-Spatial Scenario Data 

In order to create training environments for the machine learning agents in the 

simulations, OpenStreetMap (OSM) geospatial data was selected which uses tile map 

layers to display different features and annotations on top of the base geographic map. 

The map uses a topological data structure composed of Nodes, Ways, Closed Ways, 

Areas, and Relation all of which have tags [27]. OpenStreetMap Carto (Standard) is an 

open-source stylesheet that renders OpenStreetMap vector data into customizable 

raster map tiles [28], CyclOSM focuses on information relevant for bikers like trails and 

parking [29], while the Transport Map style as seen in Figure 6 spotlights global transit 

networks including railway lines and bus routes [30].  

     

Figure 6. Transport Map and layers selection menu panel 

ÖPNVKarte is a public transit-centered renderer underscoring routes and stops 

[31], and the Humanitarian map style highlights water sources, lighting, roads, social 

services and other assets useful for emergency response [32]. These alternative 
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renderers allow tuning map visualization for particular use cases while still leveraging 

the comprehensive content of the OpenStreetMap database.  

Using a hard selection criterion of global coverage, traffic demands, reliability, 

and up-to-date data [33], Pasadena, San Diego, and Tampa metro areas were selected 

for the research experiments to construct simulated urban driving scenarios for 

investigating automated vehicle systems, with the bounding box of the target regions 

encoded as latitude/longitude coordinates in JSON objects to facilitate procedural 

generation in the Unity Engine. This OSM data was then imported into Unity by way of a 

special plugin tool that converts it into a 3D mesh model. Chapter 4 discusses the 

implementation details of this process.   
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Chapter 3 – Experimental Design 
 

Evolutionary Computation 

A number of computer scientists independently investigated evolutionary 

phenomena with the concept that the principles underpinning biological evolution could 

be harnessed as an optimization technique for solving complex engineering challenges 

[34]. The fundamental idea across these systems was to simulate the process of natural 

evolution to evolve a pool of candidate solutions for a target problem, employing 

computational analogues of genetic variation mechanisms and natural selection 

pressures seen in nature.  

 

Figure 7. Hillis's sorting networks. From An Introduction to Genetic Algorithms (p. 18) by M. Mitchell, 1998, MIT 

Press. Copyright 1998. 
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Genetic Algorithm Design 

In his seminal 1975 book Adaptation in Natural and Artificial Systems, Holland 

put forth genetic algorithms, which are modeled on an abstract depiction of biological 

evolution, as an adaptive optimization search method. This established the theoretical 

framework for a computational technique to evolve new populations of solution-

encoding "chromosomes" (bit-strings) from an initial population using selection 

principles combined with genetics-inspired operators like crossover, mutation and 

inversion. Since then, many other researchers have applied genetic algorithms in their 

work, such as can be seen in Figure 7 which shows three example experiments in 

genotype representation of sorting networks by W. Daniel Hillis, who used a genetic 

algorithm in designing an optimal n = 16 sorting network. 

In this experimental research, the genetic algorithm operations that will be used 

in order to evaluate and select the best solutions are as follows: 

1. Fitness function: it evaluates the performance of each candidate. 

2. Selection: it chooses the best individuals based on their fitness score. 

3. Recombination: it replicates and recombines the individuals. 

4. Mutation: this operator randomly flips some of the bits in a chromosome which 

can occur at each bit position in a string with some small probability. 

Figure 8 illustrates an activity flow diagram model detailing the steps in the 

process of the genetic algorithm for these experiments. 
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Figure 8. Genetic Algorithm activity flow  
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Figure 9. Genetic Algorithm sequence flow 

In this system, the genetic algorithm supervises the evolutionary procedures of 

selection, crossover, and mutation. Figure 9 illustrates how it governs the probabilities 

of mutation and crossover, as well as maintaining records of all phenotypic traits for 

each vehicle-encoded solution across every iteration of the evolving population. By 

managing variation rates and cataloging attributes, the algorithm directs optimization 

towards incrementally improved subsequent generations. 

Selection Methods 

The objective of selection in genetic algorithms is to identify the fitter solution 

chromosome representations in a population and allow them to pass on features to 

subsequent generations, gradually improving offspring fitness over iterative evolution 
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[34]. The right equilibrium between exploiting the fittest solutions via selection and 

exploring through variation operators facilitates steady refinement rather than premature 

convergence or stagnation. Managing this tension allows fit genomes to propagate 

beneficial traits while maintaining enough diversity through mutation and recombination 

to continue optimization momentum. The four selections methods used in these 

experiments are detailed below: 

Tournament 

The Tournament selection method in genetic algorithms works by running 

"tournaments" among a few individual chromosomes randomly chosen from the 

population seen in Figure 10, and selecting the winner of each tournament to be a 

parent for the next generation. 

     

Figure 10. Tournament selection method 
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The tournament size controls the selection intensity - larger values make it more 

likely the fittest will get selected. 

Roulette Wheel 

The Roulette Wheel selection method in genetic algorithms works by assigning 

all individuals in the population a slice of a roulette wheel proportional to their fitness 

score as shown in Figure 11. Then the wheel is virtually "spun" multiple times to 

randomly pick individuals based on their slice size to be parents for producing the next 

generation. 

 

Figure 11. Roulette Wheel selection method 

Elitist 

In Elitist, the top 50% supplements existing selection techniques in genetic 

algorithms by preserving several top-performing solutions per generation [34]. This 
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mechanism ensures the evolutionary search retains previously discovered peaks while 

seeking potentially superior candidates as depicted in Figure 12, balancing exploiting 

the current best with exploring uncharted landscapes. By safeguarding hard-won gains 

against destructive variation, elitist enhances traditional selection approaches for 

improved genetic algorithm reliability and efficiency. 

   

 
Figure 12. Elitist selection method 

 

Tournament + 20% Random 

Similar to the Tournament, this selection method uses tournament selection for 

pairing parents by fitness, along with mutation and recombination operators that clone 

the elite chromosomes, reset the bottom 20% portion, and crossover the middle 

chromosomes. The algorithm tries to balance retaining an elite specimen, recombining 

good chromosomes, and introducing randomness for continued evolution over 

generations. 

Neural Network Architecture 

A basic feedforward artificial neural network comprises interconnected neurons 

over weighted links that activate based on input signals propagating unidirectionally 

through the network layers, roughly imitating biological neural activation flows [4]. It 
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takes an input activation pattern that spreads across weighted connections toward the 

output layer, mimicking how neural networks in the brain process signals. The 

feedforward-only architecture without feedback loops differs from recurrent networks 

allowing two-way layer activation flows. 

Each of the ADS agents in this simulation system utilizes a personalized neural 

network responsible for feeding sensor data forward in order to dictate steering and 

acceleration outputs as shown in Figure 13. This recursive tuning methodology, known 

as feedforward propagation, ingests perceptual information detailing proximities to 

environmental contours, then updating connection strengths through feedforward 

passes that accept sensory data and output driving controls. 

 

Figure 13. Feedforward Neural Network for this experiment 

Each ADS agent learns implicit policy mapping scenarios to advantageous 

actions, bypassing hand-coded rules. For this particular system, the artificial neural 
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network architecture flow of activity is illustrated in Figure 14. Appendix 1 visually 

diagrams the structure and relationships of the NeuralNetwork class.  

 

Figure 14. Artificial neural network flow of activity 
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Figure 15. Neural Network sequence of interactions 

Successive invocations will traverse the computational graph from input layer 

through hidden layers to the steering and acceleration output layer as the sequence 

model in Figure 15 illustrates. The system thereby avoids hand-authored control logic in 

favor of flexible data-driven controls mediated by optimized network weights. Weight 

inheritance and mutation is implemented between generations to enable online 

evolution of control policies with gradually accruing task proficiency. This neural network 

infrastructure offers a pathway toward sophisticated and adaptive autonomous systems 

capable of responding sensitively to complex scenarios. 

System Architecture 

Figure 16 focuses on defining the critical components both inside and external to 

the system boundary, as well as the key inputs and outputs that drive the simulation 

scenarios. It serves as a concise yet comprehensive architectural map of how the major 

pieces fit together. 
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Figure 16. System architecture 

The SimulatorTool sits within the system boundary and serves as the core 

simulation engine that runs the driving scenarios. External entities feed data and 

functionality into the SimulatorTool. This includes 3D visual assets like cars and 

environments, machine learning logic coded in C# for genetic algorithms and neural 

networks, a Manager module to coordinate the simulation, and a User that provides 

real-time inputs. Simulation data components exist outside the SimulatorTool to store 

the scenario configurations and output performance results. The Game File stores setup 

parameters in XML, while Results hold text summaries of the simulation runs.   



35 

 

Car Physics Model 

Figure 17 illustrates the architecture and interactions of the DrivingSystem 

comprised of four key components - the CarController, Input, WheelColliders, and 

Rigidbody.  

 

Figure 17. DrivingSystem components 
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The CarController is the main component responsible for controlling the car. 

Interactions in Figure 18 show how it relies on the other three components:  

Figure 18. Sequence diagram of CarController interaction 

• Input: component that handles all user input and control schemes, providing 

steering and acceleration values to the CarController. 

• WheelColliders: contains the wheel collider physics models that handle traction, 

friction, and suspension. The CarController sets torques and steering. 

• Rigidbody: the main physics component that handles momentum and collision 

response on the car. The CarController adjusts its velocity each frame. 

Together, these components enable realistic car driving physics and handling 

within the simulation game. The CarController component orchestrates the rest - 
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retrieving user input, applying physics forces on wheel colliders and Rigidbodies, and 

adjusting velocity based on steering. Figure 19 shows that on Start(), the system 

components are initialized to get the car ready for driving. Then in each frame, user 

input is retrieved to determine values for steering and acceleration. 

 

Figure 19. Activity diagram of the CarController  
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Sensors  

Figure 20 shows the discrete sequence of operations that execute over the 

lifetime of a WallSensor. When Start() initializes the class, the FixedUpdate() method 

engages in a repetitive game loop. Rays are then cast out which senses the 

environment and distances recorded depending on collision detection results.  

 

Figure 20. Sequence diagram for the WallSensor 
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Master 

Master component controls the step-by-step procedural logic to setup, execute, 

evolve cars over generations and collect results from the complete simulation run. The  

activity flow diagram in Figure 21 shows how the system starts by initializing a new 

simulation run, then loading configuration parameters that govern how the simulation 

will proceed - number of cars, neural network topology, and selection pressures.  

 

Figure 21. Master component logical flow of activity 
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Next, the main simulation loop begins, bounded by the condition - "Generation < 

Limit". Each iteration represents a generation in the evolution timeline. The cars 

compete and perform in the simulation, after which their fitness is evaluated based on 

criteria of distance covered, speed and collision avoidance. After configuration, the key 

simulation objects of the neural networked agent cars and the simulation environment 

are initialized. Based on fitness, the top performers are selected to seed the next 

generation. Selection pressures push the population towards agent cars with better 

performance over generations. The cars are evolved via crossover and mutation of their 

neural networks. Key stats get saved, Figure 22, after each generation to analyze 

simulation progress. 

   

Figure 22. Sequence diagram of Master and Manager 

The iterative evolution stops when the generation limit is hit. Finally, the model 

saves the results - the evolved cars and their brains, stats on the multi-generational 

progress and learnings. These can inform future simulations. 
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Simulator Manager 

At the heart of the system is the Manager component, which acts as the core 

coordinator. It interacts with and relies on every other component. The Track represents 

the OSM data terrain which the Manager utilizes to setup and configure each scenario. 

Key to the core behavior are the agent cars which the Manager instantiates, each agent 

encapsulating the driving logic and integrated with a neural network that enables the 

machine learning capabilities. Behind the scenes, a genetic algorithm component 

handles the optimization and evolution of the agent car neural networks over 

generations to optimize performance. For visualization, the Manager directly 

coordinates with the Display to render the game simulation and provide user feedback. 

                   

Figure 23. Main components of the simulation system 

The unidirectional dependencies, with the Manager as the orchestrator, and the 

other components focused on specific functions as modeled in Figure 23 shows 

separation of concerns that provide flexibility to enhance different aspects like the 
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machine learning logic, tracks, and visualization independently. Figure 24 shows the 

process of the simulation manager initializing the game state, then checks if loading 

from a saved state. The agent cars are instantiated next before entering the game loop. 

                               

Figure 24. Activity flow for the simualtion Manager 
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The loop continues iterating as shown in the state machine of Figure 25, 

representing the running simulation, until the game over condition is reached based on 

various stopping criteria. After the loop, fitness and neural networks are saved, 

concluding the simulation.  

             

Figure 25. State machine of the simulations system Manager 
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The Manager coordinates the saving of game data into a GameSave object 

illustrated in Figure 26. Similarly, for LoadGame(), the Manager retrieves the saved 

state data from the GameSave providing it back to the Manager, which then updates its 

internal state, effectively loading the previous game state. 

           

Figure 26. Sequence diagram of the user and simulation 
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Chapter 4 – Implementation 

Scenario Environment Generation 

OpenStreetMap (OSM) data is imported into Unity Engine using the Global 

Roads & Traffic plugin which connects to Overpass API. The Overpass API web 

database interface allows clients to send queries delineating map elements of interest 

based on constraints like location, feature type, tags, proximity and receive matching 

OSM entities per the defined selection criteria [35]. The plugin converts OSM data into 

optimized Unity meshes by downloading OSM map data for a specified region as a 

JSON file via a built-in editor tool [36] as shown in Figure 27, parses the JSON data and 

extracts relevant node, way and relation information about roads, intersections, bridges 

and other infrastructures, then adds height data, applies textures and materials to 

finalize mesh model segments as can be seen in Figure 28. 

 

Figure 27. Process flow of generating the scenario environments 
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Figure 28. Pasadena mesh model scenario environment 

The Overdraw shader mode in Unity shown in Figure 29 is used to visualize 

rendering performance by highlighting overlapping draws during runtime, or inefficient 

areas with too many redundant fragment shader executions. The Overdraw shader 

mode helped optimize performance of these complex urban city mesh models in Unity 

by identifying buildings/objects that are being drawn redundantly or unnecessarily. This 

guides rendering optimization efforts to improve graphics performance and efficiency. 

Scene entities like streetlamps and other traffic infrastructure assets can be 

repositioned if showing wasteful overlapping draws.  
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Figure 29. Overdraw visualization view 

In this Unity-based driving simulation, collider objects play a key role in defining 

drivable road surfaces and navigation paths for ADS agent vehicles. Polygon colliders 

were used to precisely outline the shape and boundaries of roads, highways, and 

alleyways that are viable for vehicles to traverse. Box and mesh colliders were applied 

to the environment to approximate more complex irregular street geometry. The 

machine learning navigation system detects this collider network to identify possible 

driving paths. Vehicle controller scripts then Raycasts downwards against the detected 

ground colliders to discern the slope and physics material properties of roads to 

influence speed, gear changing and handling. The presence and contour of colliders 

essentially signifies drivable terrain. 
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Figure 30. One-way box colliders to prevent counter flow driving 

 

Trigger colliders around intersections, parking spots and garages allow ADS 

agent cars to slow down, stop or take turns appropriately. Road and lane directionality 

can also be encoded via one-way colliders preventing counter flow as shown in Fig 30. 

This collider setup provides key environmental affordances for guiding autonomous 

vehicle decision making and maneuvering for realistic road-constrained simulation 

driving, from navigation meshes for high-level pathing to physical materials and triggers 

for low-level control. 

Agent Car Model 

The ADS agent car is a GameObject that has several C# scripts attached to it 

that provide the required functionality to navigate, analyze and learn the environment. 

The main scripts are as follows:  
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• CarController: script handles the car's physics, taking input for steering 

and acceleration and applying forces to the wheel colliders.  

• WallSensor: script is positioned at the front and shoots Raycasts out in 

front of the agent car, Figure 31, to detect the environment and provide 

distance input data to the neural network.  

• NeuralNetwork: script which initializes the network layers and neuron 

counts based on user configuration settings. It takes the input data, runs it 

through the network calculations, and outputs steering/acceleration values 

to feed back to the CarController.  

• FitnessMeter: script has a Transform variable assigned to track the agent 

car's position for fitness evaluation. On every frame, it calculates the car's 

distance to the current waypoint  - magenta cubes in Fig 32 - on the road  

to generate a fitness score. 

  

Figure 31. Sensors to detect obstructions in the environment 
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These scripts work together on each ADS agent car instance during simulations. 

The GeneticAlgorithm script is on a separate GameManager object, instantiated once. It 

contains evolution logic that operates on the NeuralNetwork components after each 

simulation, to produce the next generations. 

       

Figure 32. Magenta waypoint cubes are invisible during runtime 

 

When the simulation ends, the GeneticAlgorithm takes the fitness scores for 

each agent car, sorts them, selects parents, and performs crossover and mutation 

based on the NeuralNetwork weights and biases. Then it respawns mutated cars to 

evolve optimized driving behavior over generations. The scripts allow the neural 

networks to control the car physics along with colliders detailed in Appendix 2, while 

evolution tunes the neural networks to improve based on the car’s fitness in navigating 

the infrastructure and waypoints. 
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User Interface 

Upon tool start up, a splash screen with a set of three choices are provided, as 

shown in Figure 33. Run Simulation, which has default settings, Load Data of previously 

saved and exported simulations to use in different scenarios, or configure a scenario in 

Options. The user interface for Options shown in Figure 34 is where the parameters for 

simulation scenarios can be configured. The main parameters are: 

• Genetic Algorithm: quantity of agent cars and the selection rules.   

• Mutation Chance: probability (30%-70%) and rate (2%-4%) of mutation. 

• Neural Network: quantity of neuron layers and neurons per layer. 

• Select Level: the three scenario environments for the simulations. 

 

Figure 33. Splash start screen with Run Simulation, Options, and Load Data 
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Figure 34. Configuration UI of parameters for the simulation experiment 

 

Neural Network C# Class 

The NeuralNetwork class defines the neural network that controls the car in the 

simulation. As illustrated in Figure 35, the key data members are the NeuronLayers 

array, which holds the layers of neurons; the m_CarId field which identifies which car 

this network controls; data members that store the number of hidden layers, total 

neurons, inputs, along with m_TransferData that holds the neuron outputs during 

forward propagation. Additionally, m_CarInputs stores the input states for the neural 

network that represents the current state of the car. The m_Bias field adds a bias value 

to the weighted inputs of each neuron, and CarController is a reference to the 

component that handles moving the car. The final output layer is defined in m_Control 

which holds the two key outputs: steering and acceleration control values that act as the 
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final outputs to physically drive the car in the simulation. This NeuralNetwork class 

encapsulates the layers, connections, and data of a neural network that takes input data 

about the car’s state, passes that data through hidden neuron layers, calculates output 

control values used to drive the car via the CarController component reference.  

 

Figure 35. NeuralNetwork class  
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The Start() method initializes the neural network that will control the ADS agent 

car. It begins by setting the bias term to the global bias specified in Master and gets the 

ID of the car controller this neural network will control. It then sets the number of hidden 

layers and neurons per layer based on the global configuration in Master. Additional 

details regarding this process can be found in Appendix 3. 

Next, it determines the input count - this will be the number of car sensors plus 

an additional input depending on whether navigation data is enabled. With the topology 

defined, the method allocates the transfer data array which will hold neuron outputs 

during forward propagation and initializes the NeuronLayers array which holds the 

different neural network layers.  

The switch statement shown in Figure 36 constructs the correct layer architecture 

based on whether there are 0, 1 or 2+ hidden layers. If loading previously saved data, it 

iterates through each neuron and layer, setting the weights to values loaded from the 

Manager. Start() initializes the neural network topology, neuron layers, as well as weight 

values - configuring an appropriate neural network structure to control the ADS agent 

car based on global configuration parameters.  
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Figure 36. Switch logic statement for neuron layer 

 

Neuron Layer C# Class 

The NeuronLayer class defines the base elements and functionality for a layer of 

neurons within the neural network. It will be further extended by concrete neuron layer 

implementations. The key properties and fields shown in Figure 37 define the number of 

neurons in this layer, number of input values each neuron receives, a bias value, and 

most importantly the neuron weights matrix. The constructor method initializes these 
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fields and allocates a two-dimensional array to represent the weights matrix. Each 

neuron in the layer has a row, and each row has a weight value per input, plus one 

extra weight for the bias term. This base class constructor calls InitWeights() which will 

be defined in subclasses to initialize the starting weights values.  

 

Figure 37. The NeuronLayer class structure 
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The InitWeights() method initializes the weights matrix for the layer with random 

values between -1 and 1. It iterates through each neuron row, and within each row sets 

every input weight including the bias weight to a random number in that range. Getting 

good initial weight values is important for the efficient training of neural networks.  

The CalculateLayer() method performs the main computational logic during 

neural network propagation. As shown in Figure 38, for each neuron, it calculates the 

weighted sum by multiplying the inputs by their corresponding weights in that neuron's 

row. It adds the bias term multiplied by its weight as well. This weighted sum is then 

passed to the layer's activation function, defined in the abstract Activate() method. The 

activations from each neuron are stored in the layer output array, which is finally 

returned. 

         

Figure 38. CalculateLayer method for propagating the neural network 
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 Together these methods define the learnable parameters and functional logic of 

a neural network layer. Concrete child classes specialize the activation function and 

optionally the weight initialization. By encapsulating these basic behaviors, NeuronLayer 

provides an extensible baseline to implement different layer types. 

Genetic Algorithm C# Class 

The abstract GeneticAlgorithm class handles the main evolution operations of the 

population over each generation by selecting fitter individuals, recombining them to 

 

Figure 39. GeneticAlagorithm class structure 
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produce offspring, introducing random mutation, and replacing less fit individuals as 

specified in Figure 39. This iterative process optimizes the population to find improved 

solutions to the target problem.  

The Awake() method in Figure 40 initializes key parameters like population size, 

and mutation settings from the simulation configuration. The Start() method allocates 

the data structures to store the population - CarNetworks array stores the neural 

network models for the population, FitnessRecord struct stores fitness information for 

each agent car in the population to track performance, and CarPairs stores parent pairs 

selected for breeding new ADS agent cars each generation. The FixedUpdate loop runs 

when the current generation finishes (all cars frozen). It begins by saving the neural 

networks of the current population then sorts them by fitness. It calculates population 

statistics and invokes the selection process to pick optimal parents to breed the next 

generation. This continues for multiple generations, evolving better performing agent 

cars over time. C# code details for each of the selection methods used in the genetic 

algorithm can be found in Appendix 3. 
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Figure 40. Awake() and Start() methods 

The SavedCarNetworks loops through the entire 4D array of neural network 

weights for the population and copies the current values from the car networks into it, 

saving their state for the next generation. This preserves the "genetic material" - the 

weight parameters - before modification. It acts as a gene pool for crossover. This 

method ensures the structure is initialized properly in the first generation.  

Recombine and Mutate 

The RecombineAndMutate() method implements the core genetic operators of 

crossover and mutation to produce new neural networks for the next generation. Figure 

41 shows how It loops through all the weights of each network, and for the top fitness 
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individual, copies its weights unchanged to preserve the current best. For others, it 

randomly picks one parent index from the breeding pairs, and has a MutationChance 

probability of mutating those weights by a random factor within range. Otherwise, the 

weights get directly copied. This mixes parental genetics to produce new variety in 

neural networks and explore the solution space of new high-performing configurations. 

 

Figure 41. RecombineAndMutate method for crossover and mutation 
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In essence, crossover propagates components from fit parents, while mutation 

introduces new traits. Recombination without mutation would reduce the search space 

rapidly, while only mutation without crossover loses good solutions discovered so far. 

Using both allows balanced exploitation of current peaks versus exploration of new 

possibilities. The interplay allows continual improvement of neural networks over 

generations to maximize the fitness metric. Tracking stats monitors evolution direction, 

while saving top performers passes on beneficial genetics unchanged. This evolves 

neural networks tailored to the problem. 
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Chapter 5 – Results and Analysis 
 

The simulation results present a comparative analysis of 16 distinct neural 

network architectures with varied genetic selection methods, across three scenarios, 

each exhibiting varying configurations and training parameters. The data reveals 

notable variations in performance and structural characteristics across these 

configurations. 

Pasadena Scenario 

PSim1 demonstrated superior performance as shown in Table 1, with the highest 

maximum fitness value of 179, though its median fitness of 33 suggests considerable 

variance in outcomes. This configuration utilized an 8-layer neural network architecture 

with 6 neurons per layer and implemented Tournament selection for genetic 

progression. After 500 generations, desirable driving behavior emerged in more ADS 

agent cars as shown in Figure 42. 

 

 

Table 1. Comparative simulation results of the Pasadena scenario 
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In contrast, PSim2 and PSim3 exhibited relatively modest performance metrics, 

with maximum fitness values of 23 and 17 respectively. Despite PSim3's more complex 

neural network architecture (8 layers, 20 neurons per layer) and hybrid selection 

strategy (Tournament+ 20% Random), it achieved the lowest median fitness of 5. 

PSim4 and PSim5 showed intermediate performance levels, with maximum 

fitness values of 66 and 67 respectively. Notably, PSim5 employed the simplest neural 

network architecture (2 layers, 2 neurons per layer) while maintaining the highest 

mutation possibility at 70%, suggesting that architectural complexity may not directly 

correlate with performance optimization in this context.  

    

 

Figure 42. Desirable driving emerges after more than 500 generations 

 

The mutation rates across all simulations remained relatively consistent (2-4%), 

indicating a controlled approach to genetic variation. The diversity in genetic selection 
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methods (Tournament, Elitist, Roulette Wheel) provides valuable comparative data on 

selection strategy efficacy in evolutionary algorithms. 

These results indicate that architectural complexity does not directly correlate 

with performance effectiveness, as evidenced by the superior performance of simpler 

configurations in some instances. The data suggests that the interplay between neural 

network architecture, mutation parameters, and fitness outcomes is highly non-linear 

and merits further investigation to determine optimal configuration strategies that would 

significantly influence evolutionary outcomes in this simulation context.  

San Diego Scenario 

The San Diego Scenario simulation results also offer valuable insights into the 

interplay between neural network architecture, mutation parameters, and genetic 

algorithm selection strategies.  

Looking at the performance metrics in Table 2, SDSim3 achieved the highest 

maximum fitness of 144, employing a moderately complex architecture with 7 layers 

and 5 neurons per layer. What makes this configuration particularly interesting is its use 

of a Roulette Wheel selection method, combined with balanced mutation parameters 

(60% possibility, 3% rate). This suggests that probabilistic selection methods can 

effectively guide evolutionary optimization when paired with appropriate neural network 

structures. Behavior such as half the population of agent cars selecting different driving 

routes seen in Figure 43 was a notably observation, demonstrating exploration of 

optimal navigation paths over each generation.   
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Table 2. Simulation results from the San Diego scenario 

 

Close behind in performance are SDSim6 and SDSim7, with maximum fitness 

values of 143 and 142 respectively. Despite their similar performance outcomes, these 

configurations showcase dramatically different architectural approaches. SDSim6 

implements the most complex structure with 10 layers and 6 neurons per layer, while 

SDSim7 opts for a much simpler design with just 3 layers and 6 neurons per layer. Both 

utilize the Elitist selection strategy, though with different mutation parameters, 

suggesting that this selection method can be effective across varying neural network 

architecture complexities. 

A particularly intriguing case is SDSim4, which employs a unique hybrid selection 

approach combining Tournament selection with 20% random inclusion. Despite having 

the simplest neural network architecture (1 layer, 1 neuron per layer), it achieved a 

respectable maximum fitness of 131. However, its notably low median fitness of 5 

indicates high performance volatility, possibly due to the increased randomness in its 

selection method. 
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SDSim5 stands as an outlier in terms of performance, achieving only a maximum 

fitness of 39 despite having a moderate architecture (3 layers, 9 neurons per layer). 

This configuration uses traditional Tournament selection with conservative mutation 

parameters (40% possibility, 2% rate), suggesting that certain combinations of selection 

methods and mutation rates may lead to suboptimal outcomes.  

 

 

Figure 43. Population of agent cars select between two routes 

 

The relationship between architectural complexity and performance shows no 

clear linear correlation across these simulations. Instead, the data suggests that the 

effectiveness of a configuration depends on the harmonious interaction between neural 

network architecture, mutation parameters, and genetic selection strategy. These 

findings challenge conventional assumptions about neural network design and 
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emphasize the importance of considering selection methods as a crucial component in 

evolutionary neural network optimization.  

These results provide valuable insights for future research directions, particularly 

in understanding how different genetic selection strategies might be optimally paired 

with specific neural network architectures and mutation parameters to achieve desired 

performance outcomes. 

Tampa Scenario 

In the Tampa Scenario, TSim2 emerged as the most effective configuration, 

achieving a remarkable maximum fitness value of 269 while maintaining a median 

fitness of 26. Table 3 shows this superior performance was achieved with a relatively 

simple neural network architecture (2 layers, 3 neurons per layer) and Tournament 

selection method, operating at a 60% mutation possibility and 2% mutation rate. This 

high fitness score can be attributed to agent cars successfully exploring more of the 

environment as Figure 44 shows a few driving further in the distance.  

 

 

Table 3. Tampa simulation scenario results 
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TSim3 demonstrated the second-highest performance with a maximum fitness of 

187, though its median fitness of 14 was the lowest among all configurations. This 

simulation employed a more complex neural network architecture (4 layers, 12 neurons 

per layer) and a hybrid selection strategy of Tournament with 20% Random. 

TSim1 achieved moderate success with a maximum fitness of 114 and the 

second-highest median fitness of 27. Its configuration utilized a neural network with 3 

layers and 6 neurons per layer, implementing an Elitist selection strategy. 

 

Figure 44. ADS agents exploring more of the environment achieve higher fitness 

 

TSim4, despite having the most complex neural network architecture (6 layers, 8 

neurons per layer), recorded the lowest maximum fitness of 50, though it maintained the 
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highest median fitness of 28. This configuration employed a Roulette Wheel selection 

method with a 60% mutation possibility. 

The results suggest that architectural complexity may not be directly proportional 

to performance optimization in this context. Furthermore, the data indicates that simpler 

neural network structures, when paired with appropriate selection methods and 

mutation parameters, can yield superior results in evolutionary algorithms. The variation 

in median fitness values across configurations (ranging from 14 to 28) provides valuable 

insights into the stability and consistency of different evolutionary strategies. 
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Chapter 6 – Conclusions and Future Research 
 

Conclusions 

This thesis research in machine learning and systems simulations applied 

genetic algorithms to refine neural network architectures for automated driving system 

agents to maximize driving fitness performance over generations. Simulation 

experiments were run with differing parameters to study their impact, with results 

demonstrating that evolutionary algorithms can optimize policies to improve driving 

performance without large datasets, though consistency varies.  

A software tool was developed with a user interface for the configuration of the 

simulations, which include specifying the quantity of neurons and neuron layers, 

establishing mutation probability percentages, and selection methods for genetic 

variation to train the navigation and pathfinding capabilities of automated driving 

systems. Three scenarios are also selectable from the user interface, providing the 

option to experiment with trained automated driving systems in different environments 

for adaptability testing. 

Comprehensive analysis of the simulation data results from Pasadena, San 

Diego, and Tampa scenarios revealed several significant patterns regarding the 

evolutionary performance of the ADS agents across different parameters and selection 

methods. Different genetic selection methods yield varying levels of success across 

simulations. Tournament selection, while producing the highest individual fitness score 

of 179 in PSim1, shows inconsistent performance across different scenarios. The Elitist 
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selection method, however, demonstrates more consistent high-performance outcomes, 

particularly evident in the San Diego simulations where it produced multiple instances of 

fitness scores above 140 (SDSim2, SDSim6, and SDSim7). 

The neural network architectures, defined by the number of layers and neurons 

per layer, appears to have a complex relationship with performance. The highest 

performing simulations did not necessarily correlate with more complex neural network 

architectures. For instance, TSim2, which achieved the highest overall fitness score of 

269, utilized a relatively simple architecture of 2 layers with 3 neurons per layer. This 

suggests that simpler neural network structures might be more effective for certain 

scenarios, possibly due to better generalization capabilities. 

Mutation parameters also play a crucial role in the evolutionary process. The 

data indicates that moderate mutation possibilities (50-60%) combined with lower 

mutation rates (2-3%) tend to produce better results across all three scenarios. This is 

exemplified in TSim2 and several high-performing San Diego simulations, suggesting 

that this balance allows for sufficient exploration of the solution space while maintaining 

stable evolution. 

The median fitness scores across all simulations, detailed in Appendix 4, 

remained relatively low compared to their maximum fitness values, indicating significant 

performance variation within individual populations. This suggests that while the 

evolutionary process can produce highly capable individuals, maintaining consistent 

performance across the entire population remains challenging.  
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Optimal performance in ADS evolution depends on a delicate balance of 

parameters rather than extreme values in any single dimension. The results advocate 

for simpler neural network architectures, moderate mutation rates, and selective 

pressure that maintains diversity while promoting improvement. These findings could 

inform future approaches to evolutionary algorithm design for autonomous vehicle 

development and similar complex optimization problems in other domains.  

In this work, some methodological aspects of gene selection and system 

evolution through algorithms and some practical aspects related to their implementation 

in neural networks and different simulation environments have been addressed. From 

the methodological point of view, the results extend to the design of a genetic algorithm, 

for its simplicity and low computational power requirements, and the design of a 

feedforward artificial neural network, for its accuracy in predicting the state of the 

system. Both bio-inspired models that have been used for the design of these 

algorithms are well-known in the technical literature and are derived from organic 

systems found in nature.  

Future Research 

While these neuroevolutionary approaches significantly advanced policies, the 

simulations operated within simplified environments. Future plans include expanding the 

simulation environment to capture more real-world complexities and dynamics that 

include adding varied road types, traffic controls, weather effects, and pedestrian 

agents. Simulating more of these intricate environments will help further validate and 

enhance these evolved driving policies. Additional research aims include a focus on 
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efficiency and smoothness of control, exploring multi-objective optimization targets 

beyond the scalar driving fitness metric used, and consideration of other vehicles to 

promote safer, more well-rounded driving policies.  

Expanding beyond feedforward neural network architectures to more complex 

neural models like convolutional neural networks (CNN) and recurrent neural networks 

(RNN) are also planned as these may better capture visual, sequential, and time-series 

data patterns relevant for driving scenarios. 
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Appendix 1: Select UML Class Diagrams 
 

1-1. Neural Network Class 
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1-2. Genetic Algorithm Class 
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1-3. Simulation Manager Class 
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Appendix 2: 3D Modeling and Physics 
 

2-1. Box Collider 
 

The Box Collider acts as the main collider for detecting collisions of the overall 

agent car object. It is added as a component to the car GameObject and sized to match 

the car's body as shown in Figure 2-1.  

 

Figure 2-1. Box Collider applied to the agent car body 
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2-2. Wheel Collider 
 

The Wheel Collider component specifically handles the physics and motion of the 

wheels. Four Wheel Collider components are added as children of the car GameObject, 

positioned to match the actual wheel transforms as shown in Figure 2-2. 

 

 

Figure 2-2. Wheel Colliders applied to the agent car tires 

 

The Wheel Colliders simulate real wheel physics. The CarController script 

accesses them to apply motor/brake torques and steering angles. Wheel Colliders are 

invisible - the visible 3D wheel models as children are positioned to match the colliders 

via the UpdateMeshes() method. 

 

Key Wheel Collider properties as seen in Figure 2-3 are: 

• Mass - The wheel's mass affects physics 
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• Radius/Width - Dimensions matching the wheel model  

• Suspension Distance - How much the wheel can compress 

• Spring/Damper - Suspension responsiveness 

• Steer Angle - Maximum turn of the steering wheel 

• Motor Torque - Torque applied to accelerate the wheel 

• Brake Torque - Torque applied to slow the wheel 

• Friction Curve - Lateral and longitudinal friction 

This setup with a Box Collider for the car body and Wheel Colliders for the wheels 

provides realistic physics, tire friction, suspension, and controllable 

steering/acceleration. 

                               

Figure 2-3. Physics settings for the Wheel Collider in Inspector panel 
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Appendix 3: Neural Network and Genetic Selection 
 

3-1. Neural Network FixedUpdate() Method 

The FixedUpdate() method runs each frame to utilize the neural network to 

control the agent car. First, it gets the latest array of input sensor data for this car from 

the Manager. Then, a switch statement, shown in Figure 3-1, handles propagating the 

data through the neural network based on the number of hidden layers. For zero hidden 

layers, the output layer calculates directly from the inputs. For one hidden layer, the first 

hidden layer calculates outputs from the inputs which are fed into the output layer. For 

two or more hidden layers, the data flows sequentially from input, through each hidden 

layer, with the output from one layer becoming inputs to the next, until finally reaching 

the output layer. 

The resulting output layer activations are stored in m_Control, with the first value 

controlling steering and the second acceleration. Finally, these neural network output 

control values are applied to the CarController to physically steer and accelerate the car 

every frame in the simulation. 
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Figure 3-1. FixedUpdate() method of the NeuralNetwork class 
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3-2. Tournament C# Class 

In the GeneticAlgorithmTournament class, the tournament size is defined by the 

SelectionPressure parameter shown in Figure 3-2. In each tournament, individuals 

compete and the one with the highest fitness gets selected as a parent, the rest are 

eliminated. This repeats, forming parent pairs for crossover. By default, one parent of 

each pair is randomly chosen. The second goes through the tournament process. 

Tournaments continue until all the breeding pairs for the next generation are filled. 

Multiple tournaments are held across the population.  

The methods implement the tournament logic through random sampling without 

replacement, fitness-based sorting within groups, and pairing winners over iterations. 

The advantage of tournament selection is that fitter individuals have a higher chance of 

being selected across multiple simulation runs, but selection is still stochastic, so 

genetic diversity is maintained. The smaller the tournaments, the higher the selection 

pressure rewarding top fitness. 
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Figure 3-2. Tournament genetic selection method 
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3-3. Elitist C# Class 

GeneticAlgorithmTopHalf class selects parents from the Elitist fittest individuals 

of the population. As shown in Figure 3-3, it first determines which are the top half 

neural networks by sorting the FitnessRecords, then IDs of these top performers are 

stored. Then for every breeding pair, it randomly samples two parents from this top half 

set, ensuring they are distinct. If the same ID is picked twice, re-sampling occurs. 

Crossover only happens between the elite of that generation. By restricting the gene 

pool to above average candidates, it focuses evolution on propagating beneficial 

genetics of neural networks already partially optimized. However, since pairing is still 

random, it maintains enough diversity for continued improvement across generations. 

 

Figure 3-3. Elitist genetic selection method 
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3-4. Tournament + 20% Random C# Class 

GeneticAlgorithmWorstRandom class combines tournament selection with 

random resetting of the worst neural networks each generation. It runs tournaments - 

while loops in Figure 3-4 - to pick good parents for crossover. This ensures above 

average candidates pass on genetics. Additionally, the bottom 20% lowest performing 

neural networks have their weights randomly reinitialized instead of undergoing 

recombination. This introduces new genetic diversity and the possibility of better 

configurations, avoiding stagnation. Over successive generations, the threshold dividing 

fit and unfit neural networks rises, so more get reset as the average fitness increases 

from those benefiting from crossover.  
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Figure 3-4. Tournament + Random 20% genetic selection method 
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3-5. Roulette Wheel C# Class 

GeneticAlgorithmRouletteWheel class randomly picks two numbers between 0 

and 1 to select parents. The numbers fall into segments which map to a specific neural 

network's arc. Start(), initializes the CarNetworks array in Figure 3-5 to hold the neural 

networks and creates a 2D array CarPairs to store the breeding pairs. It then allocates a 

FitnessRecord array to contain fitness data and allocates the WheelItem array with size 

equal to population, to store information for roulette wheel segments. 

 

Figure 3-5. Roulette wheel genetic selection method 
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The Selection() method normalizes the fitness scores into a proportional range 

as shown in Figure 3-6, so that if a neural network has a fitness twice that of another, its 

range also doubles. These form segments of a wheel with higher fitness scores 

equating to larger arcs on the wheel. Spinning a random number across generations 

allows periodic selection of even, low fitness neural networks to maintain diversity. Over 

successive generations, as fitness increases, the wheel gets divided into a finer 

resolution, and subsequently, fitness differentials between candidates become more 

pronounced. Tradeoffs are done to optimize genetic propagation across generations.  

 

Figure 3-6. Selection() method for fitness 
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Appendix 4: Aggregate Analysis of All Three Scenario 
Simulation Results 
 

4-1. Correlation Analysis 

 

Figure 4-1. Correlation analysis of all three scenarios 

 

4-2. Regression Analysis 

 

Figure 4-2. Max Fitness vs Neuron Layers regression analysis 



95 

 

 

Figure 4-3. Max Fitness vs Neurons per Layer regression analysis 

 

 

 

Figure 4-4. Max Fitness vs Mutation Possibility regression analysis 

 

 

 

Figure 4-5. Max Fitness vs Neurons per Layer regression analysis (quadratic)  

 

 

 


